This paper deals with the numerical and theoretical investigations of the effect of geometrical dimensions and one-dimensional (1D)-design parameters on the impeller pressure slope of a transonic centrifugal compressor stage for industrial process application. A database being generated during the multi-objective and multipoint design process of a high flow coefficient impeller, comprising 545 computational fluid dynamics (CFD) designs is investigated in off-design and design conditions by means of Reynolds-averaged Navier–Stokes (RANS) simulation of an impeller with vaneless diffuser. For high flow coefficients of 0.16 < ϕdes < 0.18, the CFD-setup has been validated against measurement data regarding stage and impeller performance taken from MAN test rig experimental data for a centrifugal compressor stage of similar flow coefficient. This paper aims at answering the question how classical design parameter, such as the impeller blade angle distribution, impeller suction diameter, and camber line length affect the local and total relative diffusion and pressure slope toward impeller stall operation. A second-order analysis of the CFD database is performed by cross-correlating the CFD data with results from impeller two-zone 1D modeling and a rapid loading calculation process by Stanitz and Prian. The statistical covariance of first-order 1D-analysis parameters such as the mixing loss of the impeller secondary flow, the slip factor, impeller flow incidence is analyzed, thereby showing strong correlation with the design and off-design point efficiency and pressure slope. Finally, guide lines are derived in order to achieve either optimized design point efficiency or maximum negative pressure slope characteristics toward impeller stall operation.

References

1.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R.
,
2010
, “
Multi-Disciplinary Optimization of a Radial Compressor for Micro Gas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.
2.
Geller
,
M.
,
Schemmann
,
C.
, and
Kluck
,
N.
,
2017
, “
Optimization of the Operation Characteristic of a Highly Stressed Centrifugal Compressor Impeller Using Automated Optimization and Meta-Modelling Methods
,”
ASME
Paper No. GT2017-63262
.
3.
Guo
,
Z.
,
Song
,
L.
,
Zhou
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Multi-Objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092602
.
4.
Liu
,
X. M.
, and
Zhang
,
W. B.
,
2010
, “
Two Schemes of Multi-Objective Aerodynamic Optimization for Centrifugal Impeller Using Response Surface Model and Genetic Algorithm
,”
ASME
Paper No.GT2010-23775
.
5.
Li
,
X.
,
Zhao
,
Y.
,
Liu
,
Z.
, and
Chen
,
H.
,
2016
, “
The Optimization of a Centrifugal Impeller Based on a New Multi-Objective Evolutionary Strategy
,”
ASME
Paper No. GT2016-56592
.
6.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
140
(
5
), p.
051011
.
7.
Hunziker
,
R.
,
Dickmann
,
H. P.
, and
Emmrich
,
R.
,
2001
, “
Numerical and Experimental Investigation of a Centrifugal Compressor With an Inducer Casing Bleed System
,”
Proc. Inst. Mech. Eng., 215(Part A)
, pp.
783
791
.
8.
Bareiß
,
S.
,
Vogt
,
D. M.
, and
Chebli
,
E.
,
2015
, “
Investigation on the Impact of Circumferential Grooves on the Aerodynamic Centrifugal Compressor Performance
,”
ASME
Paper No. GT2015-42211
.
9.
Numakura
,
R.
,
Tamaki
,
H.
,
Hazby
,
H.
, and
Casey
,
M.
,
2014
, “
Effect of a Recirculation Device on the Performance of Transonic Mixed Flow Compressors
,”
ASME
Paper No. GT2014-25365
.
10.
Erdmenger
,
R. R.
, and
Michelassi
,
V.
,
2014
, “
Impact of Main and Splitter Blade Leading Edge Contour on the Performance of High Pressure Ratio Centrifugal Compressors
,”
ASME
Paper No. GT2014-27062
.
11.
Harley
,
P.
,
Spence
,
S.
,
Filsinger
,
D.
,
Dietrich
,
M.
, and
Early
,
J.
,
2013
, “
Assessing 1D Loss Models for the Off-Design Performance Prediction of Automotive Turbocharger Compressors
,”
ASME
Paper No. GT2013-94262
.
12.
Galvas
,
M. R.
,
1973
, “
Fortran Program for Predicting Off-Design Performance of Centrifugal Compressors
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TN-D-7487, E-7480
.https://ntrs.nasa.gov/search.jsp?R=19740001912
13.
Casey
,
M.
, and
Robinson
,
C.
,
2012
, “
A Method to Estimate the Performance Map of a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
135
(
2
), p.
021034
.
14.
Rodgers
,
C.
,
2005
, “
Flow Ranges of 8.0:1 Pressure Ratio Centrifugal Compressors for Aviation Applications
,”
ASME
Paper No. GT2005-68041
.
15.
Rusch
,
D.
, and
Casey
,
M.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031035
.
16.
Tomita
,
I.
,
Ibaraki
,
S.
,
Furukawa
,
M.
, and
Yamada
,
K.
,
2012
, “
The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor
,”
ASME
Paper No. GT2012-68947.
17.
Tamaki
,
H.
,
Masaru
,
U.
,
Kawakubo
,
T.
, and
Yutaka
,
H.
,
2010
, “
Aerodynamic Design of Centrifugal Compressor or AT14 Turbocharger
,”
IHI Eng. Rev.
,
43
(2), pp. 70–76.
18.
Tomita
,
I.
,
Ibaraki
,
S.
,
Wakashima
,
K.
,
Furukawa
,
M.
,
Yamada
,
K.
, and
Kanzaki
,
D.
,
2015
, “
Effects of Flow Path Height of Impeller Exit and Diffuser on Flow Fields in a Transonic Centrifugal Compressor
,”
ASME
Paper No. GT2015-43271
.
19.
Stanitz
,
J. D.
, and
Prian
,
V. D.
,
1951
, “
A Rapid Approximate Method for Determining Velocity Distribution on Impeller Blades of Centrifugal Compressors
,” National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory, Cleveland, OH, Technical Report No. NACA-TN-2421.
You do not currently have access to this content.