Blade tip design and tip leakage flows are crucial aspects for the development of modern aero-engines. The inevitable clearance between stationary and rotating parts in turbine stages generates high-enthalpy unsteady leakage flows that strongly reduce the engine efficiency and can cause thermally induced blade failures. An improved understanding of the tip flow physics is essential to refine the current design strategies and achieve increased turbine aerothermal performance. However, while past studies have mainly focused on conventional tip shapes (flat tip or squealer geometries), the open literature suffers from a shortage of experimental and numerical data on advanced blade tip configurations of unshrouded rotors. This work presents a complete numerical and experimental investigation on the unsteady flow field of a high-pressure turbine, adopting three different blade tip profiles. The aerothermal characteristics of two novel high-performance tip geometries, one with a fully contoured shape and the other presenting a multicavity squealer-like tip with partially open external rims, are compared against the baseline performance of a regular squealer geometry. The turbine stage is tested at engine-representative conditions in the high-speed turbine facility of the von Karman Institute. A rainbow rotor is mounted for simultaneous aerothermal testing of multiple blade tip geometries. On the rotor disk, the blades are arranged in sectors operating at two different clearance levels. A numerical campaign of full-stage simulations was also conducted on all the investigated tip designs to model the secondary flows development and identify the tip loss and heat transfer mechanisms. In the first part of this work, we describe the experimental setup, instrumentation, and data processing techniques used to measure the unsteady aerothermal field of multiple blade tip geometries using the rainbow rotor approach. We report the time-average and time-resolved static pressure and heat transfer measured on the shroud of the turbine rotor. The experimental data are compared against numerical predictions. These numerical results are then used in the second part of the paper to analyze the tip flow physics, model the tip loss mechanisms, and quantify the aero-thermal performance of each tip geometry.

References

1.
Haselbach
,
F.
, and
Taylor
,
M.
,
2013
, “
Axial Flow High Pressure Turbine Aerodynamic Design
,”
Aeroengine Design: From State of the Art of TurboFans Towards Innovative Architectures
(VKI Lecture Series, Vol. 2013-04),
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
2.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
3.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
4.
Bunker
,
R. S.
,
2001
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. New York Acad. Sci.
,
934
(1), pp.
64
79
.
5.
Collins
,
M.
,
Chana
,
K.
, and
Povey
,
T.
,
2016
, “
Improved Methodologies for Time-Resolved Heat Transfer Measurements, Demonstrated on an Unshrouded Transonic Turbine Casing
,”
ASME J. Turbomach.
,
138
(
11
), p.
111007
.
6.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.-P.
,
2011
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
7.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
8.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
ASME
Paper No. GT2009-59909
.
9.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J.-C.
,
Lee
,
C. P.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer
,”
ASME J. Turbomach.
,
125
(
4
), pp.
778
787
.
10.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
11.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
12.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
13.
Shyam
,
V.
, and
Ameri
,
A.
,
2011
, “
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
,”
ASME
Paper No. GT2011-46390
.
14.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for HP Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
,
135
(
5
), p.
051025
.
15.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Tolpadi
,
A. K.
, and
Bergholz
,
R. F.
,
2009
, “
Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine, Including Endwalls
,”
ASME J. Turbomach.
,
131
(
2
), p.
021001
.
16.
Haldeman
,
C. W.
,
Dunn
,
M. G.
, and
Mathison
,
R. M.
,
2011
, “
Fully Cooled Single Stage HP Transonic Turbine—Part II: Influence of Cooling Mass Flow Changes and Inlet Temperature Profiles on Blade and Shroud Heat-Transfer
,”
ASME J. Turbomach.
,
134
(
3
), p.
031011
.
17.
Bindon
,
J. P.
, and
Morphis
,
G.
,
1992
, “
The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data
,”
ASME J. Turbomach.
,
114
(
1
), pp.
198
203
.
18.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
19.
Arisi
,
A.
,
Phillips
,
J.
,
Ng
,
W. F.
,
Xue
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Study on the Aerothermal Characteristics of a Ribbed Transonic Squealer-Tip Turbine Blade With Purge Flow
,”
ASME J. Turbomach.
,
138
(
10
), p.
101007
.
20.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.
21.
Zhang
,
Q.
,
ODowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M. L. G.
, and
Ligrani
,
P. M.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
22.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading—Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
,
125
(
1
), pp.
97
106
.
23.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions—(II): Time-Resolved Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
945
960
.
24.
Coull
,
J. D.
, and
Atkins
,
N. R.
,
2015
, “
The Influence of Boundary Conditions on Tip Leakage Flow
,”
ASME J. Turbomach.
,
137
(
6
), p.
061005
.
25.
Thorpe
,
S. J.
,
Miller
,
R. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2005
, “
The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
,”
ASME J. Turbomach.
,
129
(
1
), pp.
84
91
.
26.
Jackson
,
A. J.
,
Wheeler
,
A. P. S.
, and
Ainsworth
,
R. W.
,
2015
, “
An Experimental and Computational Study of Tip Clearance Effects on a Transonic Turbine Stage
,”
Int. J. Heat Fluid Flow
,
56
, pp.
335
343
.
27.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2013
, “
Blade Tip Shape Optimization for Enhanced Turbine Aerothermal Performance
,”
ASME J. Turbomach.
,
136
(
4
), p.
041016
.
28.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2014
, “
Blade Tip Carving Effects on the Aerothermal Performance of a Transonic Turbine
,”
ASME J. Turbomach.
,
137
(
2
), p.
021005
.
29.
Olive
,
R.
,
D.
,
Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2017
, “
Method for Modelling a Bathtub of a Blade
,” U.S. Patent No. 20170199945.
30.
Andreoli
,
V.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Fernandez Villace
,
V.
,
2016
, “
Robust Model of a Transient Wind Tunnel for Off-Design Aerothermal Testing of Turbomachinery
,”
Measurement
,
82
, pp.
323
333
.
31.
Lavagnoli
,
S.
,
Maesschalck
,
C. G. D.
,
Andreoli
,
V.
,
Paniagua
,
G.
, and
Cuadrado
,
D. G.
, “
Wind Tunnel Testing of Turbine Blade Tip Flows
,”
AIAA
Paper No. AIAA 2016-0910.
32.
Vince
,
J. M.
,
1988
,
Rotordynamics of Turbomachinery
,
Wiley
, New York.
33.
Cuadrado
,
D. G.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
,
2015
, “
Methodology to Correct the Magnetic Field Effect on Thin Film Measurements
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031602
.
34.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Tulkens
,
M.
, and
Steiner
,
A.
,
2012
, “
High-Fidelity Rotor Gap Measurements in a Short-Duration Turbine Rig
,”
Mech. Syst. Signal Process.
,
27
, pp.
590
603
.
35.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Andreoli
,
V.
,
2016
, “
Design Considerations for Tip Clearance Control and Measurement on a Turbine Rainbow Rotor With Multiple Blade Tip Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042603
.
36.
Denos
,
R.
,
2002
, “
Influence of Temperature Transients and Centrifugal Force on Fast-Response Pressure Transducers
,”
Exp Fluids
,
33
(
2
), pp.
256
264
.
37.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
, and
Yasa
,
T.
,
2013
, “
Analysis of the Unsteady Overtip Casing Heat Transfer in a High Speed Turbine
,”
ASME J. Turbomach.
,
135
(
3
), p.
031027
.
38.
Iliopoulou
,
V.
,
Denos
,
R.
,
Billiard
,
N.
, and
Arts
,
T.
,
2004
, “
Time-Averaged and Time-Resolved Heat Flux Measurements on a Turbine Stator Blade Using Two-Layered Thin-Film Gauges
,”
ASME J. Turbomach.
,
126
(
4
), pp.
570
577
.
39.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2015
, “
Uncertainty Analysis of Adiabatic Wall Temperature Measurements in Turbine Experiments
,”
Appl. Therm. Eng.
,
82
, pp.
170
181
.
40.
Lakshminarayana
,
B.
,
1995
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
, New York.
41.
Pianko
,
M.
, and
Wazelt
,
F.
,
1983
, “
Propulsion and Energetics Panel Working Group 14 on Suitable Averaging Techniques in Non-Uniform Internal Flows
,” AGARD, SPS Limited, Essex, UK, Technical, Report No. AGARD-AR-182.
42.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
, and
Paniagua
,
G.
, June
2017
, “
Integration of CFD to Design Experiments for Enhanced Spatial and Temporal Discretization
,”
ASME
Paper No. GT2017-64863.
You do not currently have access to this content.