Computational fluid dynamics (CFD) has been widely used for compressor design, yet the prediction of performance and stage matching for multistage, high-speed machines remains challenging. This paper presents the authors' effort to improve the reliability of CFD in multistage compressor simulations. The endwall features (e.g., blade filet and shape of the platform edge) are meshed with minimal approximations. Turbulence models with linear and nonlinear eddy viscosity models are assessed. The nonlinear eddy viscosity model predicts a higher production of turbulent kinetic energy in the passages, especially close to the endwall region. This results in a more accurate prediction of the choked mass flow and the shape of total pressure profiles close to the hub. The nonlinear viscosity model generally shows an improvement on its linear counterparts based on the comparisons with the rig data. For geometrical details, truncated filet leads to thicker boundary layer on the filet and reduced mass flow and efficiency. Shroud cavities are found to be essential to predict the right blockage and the flow details close to the hub. At the part speed, the computations without the shroud cavities fail to predict the major flow features in the passage, and this leads to inaccurate predictions of mass flow and shapes of the compressor characteristic. The paper demonstrates that an accurate representation of the endwall geometry and an effective turbulence model, together with a good quality and sufficiently refined grid, result in a credible prediction of compressor matching and performance with steady-state mixing planes.

References

1.
Adamczyk
,
J.
,
1984
, “Model Equation for Simulating Flows in Multistage Turbomachinery,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TM-86869
.https://ntrs.nasa.gov/search.jsp?R=19850003728
2.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
3.
Denton
,
J.
, and
Dawes
,
W.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C
,
213
(2), pp.
107
124
.
4.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M.
,
2001
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.
5.
Denton
,
J.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.
6.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
ASME
Paper No. GT2003-38698.
7.
Wang
,
F.
,
2013
, “Whole Aero-Engine Meshing and CFD Simulation,”
Ph.D. thesis
, Imperial College London, London.https://spiral.imperial.ac.uk/handle/10044/1/27235
8.
Shabbir
,
A.
,
Celestina
,
M.
,
Adamczyk
,
J.
, and
Strazisar
,
A.
,
1997
, “
The Effect of Hub Leakage Flow on Two High Speed Axial Flow Compressor Rotors
,”
ASME
Paper No. 97-GT-346.
9.
Wellborn
,
S.
, and
Okiishi
,
T.
,
1999
, “
The Influence of Shrouded Stator Cavity Flow on Multistage Compressor Performance
,”
ASME J. Turbomach.
,
121
(3), pp.
486
497
.
10.
Wellborn
,
S. R.
,
Tolchinsky
,
I.
, and
Okiishi
,
T.
,
1999
, “
Modeling Shrouded Stator Cavity Flows in Axial-Flow Compressors
,”
ASME J. Turbomach.
,
122
(
1
), pp.
55
61
.
11.
Menter
,
F.
,
Garbaruk
,
A.
, and
Egorov
,
Y.
,
2012
, “
Explicit Algebraic Reynolds Stress Models for Anisotropic Wall-Bounded Flows
,”
Prog. Flight Phys.
,
3
, pp.
89
104
.
12.
Wang
,
F.
,
Carnevale
,
M.
,
Lu
,
G.
,
di Mare
,
L.
, and
Kulkarni
,
D.
,
2016
, “
Virtual Gas Turbine: Pre-Processing and Numerical Simulations
,”
ASME
Paper No. GT2016-56227.
13.
Cumpsty
,
N.
,
2010
, “
Some Lessons Learned
,”
ASME J. Turbomach.
,
132
(
4
), p.
041018
.
14.
di Mare
,
L.
,
Kulkarni
,
D. Y.
,
Wang
,
F.
,
Romanov
,
A.
,
Ramar
,
P. R.
, and
Zachariadis
,
Z. I.
,
2011
, “
Virtual Gas Turbine: Geometry and Conceptual Description
,”
ASME
Paper No. GT2011-46437.
15.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
16.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
17.
Carnevale
,
M.
,
Wang
,
F.
,
Green
,
J.
, and
Mare
,
L.
,
2016
, “
Lip Stall Suppression in Powered Intakes
,”
J. Propul. Power
,
32
(
1
), pp.
161
170
.
18.
Carnevale
,
M.
,
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Low Frequency Distortion in Civil Aero-Engine Intake
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041203
.
19.
Hadade
,
I.
, and
di Mare
,
L.
,
2016
, “
Modern Multicore and Manycore Architectures: Modelling, Optimisation and Benchmarking a Multiblock CFD Code
,”
Comput. Phys. Commun.
,
205
(
Suppl. C
), pp.
32
47
.
20.
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Mesh Generation for Turbomachinery Blade Passages With Three-Dimensional Endwall Features
,”
J. Propul. Power
,
33
(
6
), pp.
1459
1472
.
21.
Wang
,
F.
, and
di Mare
,
L.
,
2016
, “
Hybrid Meshing Using Constrained Delaunay Triangulation for Viscous Flow Simulations
,”
Int. J. Numer. Methods Eng.
,
108
(
13
), pp.
1667
1685
.
You do not currently have access to this content.