This paper describes the use of the free-form-deformation (FFD) parameterization method to create a novel blade shape for a highly loaded, transonic axial compressor. The novel geometry makes use of precompression (via an S-shaping of the blade around midspan) to weaken the shock and improve the aerodynamic performance. It is shown how free-form-deformation offers superior flexibility over traditionally used parameterization methods. The novel design (produced via an efficient optimization method) is presented and the resulting flow is analyzed in detail. The efficiency benefit is over 2%, surpassing other results in the literature for the same geometry. The precompression effect of the S-shape is analyzed and explained, and the entropy increase across the shock (along the midblade line) is shown to be reduced by almost 80%. Adjoint surface sensitivity analysis of the datum and optimized designs is presented, showing that the S-shape is located in the region predicted to be most significant for changes in efficiency. Finally, the off-design performance of the blade is analyzed across the rotor characteristics at various speeds.

References

1.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
565
.
2.
Duta
,
M. C.
,
Shahpar
,
S.
, and
Giles
,
M. B.
,
2007
, “
Turbomachinery Design Optimization Using Automatic Differentiated Adjoint Code
,”
ASME
Paper No. GT2007-28329.
3.
Chen
,
N.
,
Zhang
,
H.
,
Xu
,
Y.
, and
Huang
,
W.
,
2007
, “
Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor
,”
J. Therm. Sci.
,
16
(
2
), pp.
105
114
.
4.
Wang
,
X.
,
Wang
,
S.
, and
Han
,
W.
,
2008
, “
Multi-Objective Aerodynamic Design Optimization Based on Camber Line and Thickness Distribution for a Transonic Compressor Rotor
,”
ASME
Paper No. IMECE2008-66345.
5.
Samad
,
A.
, and
Kim
,
K. Y.
,
2008
, “
Multi-Objective Optimization of an Axial Compressor Blade
,”
J. Mech. Sci. Technol.
,
22
(
5
), pp.
999
1007
.
6.
Brooks
,
C. J.
,
Forrester
,
A. I. J.
,
Keane
,
A. J.
, and
Shahpar
,
S.
,
2011
, “
Multi-Fidelity Design Optimisation of a Transonic Compressor Rotor
,”
9th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Istanbul, Turkey, Mar. 21–29, Vol.
2
, pp.
1267
1276
.
7.
Shahpar
,
S.
,
Polynkin
,
A.
, and
Toropov
,
V.
,
2008
, “
Large Scale Optimization of Transonic Axial Compressor Rotor Blades
,”
AIAA
Paper No. 2008-2056-891.
8.
Polynkin
,
A.
,
Toropov
,
V.
, and
Shahpar
,
S.
,
2010
, “
Multidisciplinary Optimization of Turbomachinery Based on Metamodel Built by Genetic Programming
,”
AIAA
Paper No. 2010-9397.
9.
Ginder
,
R. B.
, and
Calvert
,
W. J.
,
1987
, “
The Design of an Advanced Civil Fan Rotor
,”
ASME J. Turbomach.
,
109
(
3
), pp.
340
345
.
10.
Adamczyk, J., private communication.
11.
Hield, P., Compressor Aerodynamics Specialist, Rolls-Royce, private communication.
12.
Dunham
,
J.
,
1998
,
CFD Validation for Propulsion System Components (la Validation CFD des Organes des Propulseurs)
,” Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, Report No.
AGARD-AR-355
.
13.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “
Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82
,” NASA Lewis Research Center; Cleveland, OH, Report No.
NASA-TP-1338
.
14.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
ASME
Paper No. GT2003-38698.
15.
Coquillart
,
S.
,
1990
, “
Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling
,”
ACM SIGGRAPH Comput. Graph.
,
24
(
4
), pp.
187
196
.
16.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation (IC-SEC)
, Singapore, June 30–July 2, Vol.
30
.
17.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper 93-2906.
18.
Seshadri
,
P.
,
Parks
,
G. T.
, and
Shahpar
,
S.
,
2014
, “
Leakage Uncertainties in Compressors: The Case of Rotor 37
,”
J. Propul. Power
,
31
(
1
), pp.
456
466
.
19.
Chima
,
R. V.
,
2009
, “
SWIFT Code Assessment for Two Similar Transonic Compressors
,”
AIAA
Paper No. 2009-1058.
20.
Seshadri
,
P.
,
Shahpar
,
S.
, and
Parks
,
G. T.
,
2014
, “
Robust Compressor Blades for Desensitizing Operational Tip Clearance Variations
,”
ASME
Paper No. GT2014-26624.
21.
Shahpar
,
S.
,
2005
, “
SOPHY: An Integrated CFD Based Automatic Design Optimization System
,” Paper No.
ISABE-2005-1086
.
22.
Bruce
,
P. J. K.
, and
Colliss
,
S. P.
,
2015
, “
Review of Research Into Shock Control Bumps
,”
Shock Waves
,
25
(
5
), pp.
451
471
.
23.
Qin
,
N.
,
Wong
,
W. S.
, and
Le Moigne
,
A.
,
2008
, “
Three-Dimensional Contour Bumps for Transonic Wing Drag Reduction
,”
Proc. Inst. Mech. Eng., Part G
,
222
(
5
), pp.
619
629
.
24.
Schmidt
,
J. F.
,
Moore
,
R. D.
,
Wood
,
J. R.
, and
Steinke
,
R. J.
,
1987
, “
Supersonic Through-Flow Fan Design
,”
AIAA
Paper No. 87-1746.
You do not currently have access to this content.