The operating range of a compressor is usually limited by the rapid growth of three-dimensional (3D) separations in the endwall flow region. In contrast, the freestream region is not usually close to its diffusion limit and has little effect on overall range. In light of these two distinct flow regions, this paper considers how velocity triangles in the endwall region should be designed to give a more balanced spanwise failure across the span of a blade row. In the first part of this paper, the sensitivity of 3D separations in a single blade row to variations in realistic multistage inlet conditions and endwall geometry is investigated. It is shown that a blade's 3D separation size is largely controlled by the dynamic pressure within the incoming endwall “repeating stage” boundary layer and not the detailed local geometry within the blade row. In the second part of this paper, the traditional design process is “flipped.” Instead of redesigning a blade's endwall geometry to cope with a particular inlet profile into the blade row, the endwall region is redesigned in the multistage environment to “tailor” the inlet profile into downstream blade rows, giving the designer a new extra degree-of-freedom. This extra degree-of-freedom is exploited to balance freestream and endwall operating range, resulting in a compressor having an increased operating range of ∼20%. If this increased operating range is traded with reduced blade count, it is shown that a design efficiency improvement of ∼0.5% can be unlocked.
Skip Nav Destination
Article navigation
June 2017
Research-Article
Design of Compressor Endwall Velocity Triangles
Robert J. Miller
Robert J. Miller
Search for other works by this author on:
Kiran Auchoybur
Robert J. Miller
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received September 22, 2016; final manuscript received October 20, 2016; published online February 1, 2017. Editor: Kenneth Hall.
J. Turbomach. Jun 2017, 139(6): 061005 (11 pages)
Published Online: February 1, 2017
Article history
Received:
September 22, 2016
Revised:
October 20, 2016
Citation
Auchoybur, K., and Miller, R. J. (February 1, 2017). "Design of Compressor Endwall Velocity Triangles." ASME. J. Turbomach. June 2017; 139(6): 061005. https://doi.org/10.1115/1.4035233
Download citation file:
Get Email Alerts
Related Articles
Loss and Deviation in Windmilling Fans
J. Turbomach (October,2016)
Effects of Rotor Tip Blade Loading Variation on Compressor Stage Performance
J. Turbomach (May,2017)
Experimental and Numerical Investigation of a Circumferential Groove Casing Treatment in a Low-Speed Axial Research Compressor at Different Tip Clearances
J. Turbomach (December,2017)
High Resolution RANS Nonlinear Harmonic Study of Stage 67 Tip Injection Physics
J. Turbomach (May,2015)
Related Proceedings Papers
Related Chapters
Other Components and Variations
Axial-Flow Compressors
Aerodynamic Performance Analysis
Axial-Flow Compressors
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition