Additive manufacturing (AM) with metal powder has made possible the fabrication of gas turbine components with small and complex flow paths that cannot be achieved with any other manufacturing technology presently available. The increased design space of AM allows turbine designers to develop advanced cooling schemes in high-temperature components to increase cooling efficiency. Inherent in AM with metals is the large surface roughness that cannot be removed from small internal geometries. Such roughness has been shown in previous studies to significantly augment pressure loss and heat transfer of small channels. However, the roughness on these channels or other surfaces made from AM with metal powder has not been thoroughly characterized for scaling pressure loss and heat transfer data. This study examines the roughness of the surfaces of channels of various hydraulic length scales made with direct metal laser sintering (DMLS). Statistical roughness parameters are presented along with other parameters that others have found to correlate with flow and heat transfer. The pressure loss and heat transfer previously reported for the DMLS channels studied in this work are compared to the physical roughness measurements. Results show that the relative arithmetic mean roughness correlates well with the relative equivalent sand grain roughness. A correlation is presented to predict the Nusselt number of flow through AM channels, which gives better predictions of heat transfer than correlations currently available.

References

1.
GE
,
2015
, “
Additive Manufacturing
,” General Electric, Fairfield, CT, accessed Oct. 12, 2015, http://www.ge.com/stories/advanced-manufacturing
2.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2015
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach
,
138
(
5
), p.
051008
.
3.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach
,
138
(
5
), p.
051006
.
4.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in rauhen Rohren
,”
Forschungsheft 316
, Teil B, Vol. 4,
VDI-Verlag
,
Berlin
.
5.
Moody
,
L. F.
,
1944
, “
Friction Factor for Pipe Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
684
.
6.
Schlichting
,
H.
, and
Klaus
,
G.
,
2000
,
Boundary Layer Theory
,
Springer
,
New York
.
7.
Schlichting
,
H.
,
1936
, “
Experimentelle Untersuchungen zum Rauhigkeitsproblem
,”
Ing.-Arch.
,
7
(
1
), pp.
1
34
.
8.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
9.
Weaver
,
S. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2011
, “
Microchannels With Manufacturing Roughness Levels
,”
ASME J. Turbomach.
,
133
(
4
), p.
041014
.
10.
Huang
,
K.
,
Wan
,
J. W.
,
Chen
,
C. X.
,
Li
,
Y. Q.
,
Mao
,
D. F.
, and
Zhang
,
M. Y.
,
2013
, “
Experimental Investigation on Friction Factor in Pipes With Large Roughness
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
147
153
.
11.
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
,
2007
, “
Effects of Low Uniform Relative Roughness on Single-Phase Friction Factors in Microchannels and Minichannels
,”
ASME
Paper No. ICNMM2007-30031.
12.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
13.
EOS GmbH
,
2011
, “
Material Data Sheet: EOS CobaltChrome MP1
,” EOS GmbH, München, Germany.
14.
EOS GmbH
,
2014
, “
Material Data Sheet: EOS NickelAlloy IN718
,” EOS GmbH, München, Germany.
15.
EOS GmbH
,
2011
, “
Basic Training EOSINT M 280
,” EOS GmbH, München, Germany.
16.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of ‘Ra’ to Describe Surface Roughness
,”
ASME J. Turbomach
,
138
(
10
), p.
101003
.
17.
Dirling
,
R. B.
,
1973
, “
A Method for Computing Roughwall Heat Transfer Rates on Reentry Nosetips
,”
AIAA
Paper No. 73-763.
18.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
671
677
.
19.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2005
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken, NJ
.
20.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.
21.
Bons
,
J. P.
,
2002
, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
22.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.
23.
Qi
,
S. L.
,
Zhang
,
P.
,
Wang
,
R. Z.
, and
Xu
,
L. X.
,
2007
, “
Single-Phase Pressure Drop and Heat Transfer Characteristics of Turbulent Liquid Nitrogen Flow in Micro-Tubes
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1993
2001
.
24.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), p.
100606
.
25.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
590
596
.
26.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.
27.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “
Turbulent and Transition Flow Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
.
28.
Prandtl
,
L.
,
1910
, “
Eine Beziehung zwischen Wärmeaustausch und Strömungswiderstand der Flüssigkeiten
,”
Z. Für Phys.
,
11
, pp.
1072
1078
.
29.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
You do not currently have access to this content.