Noise originating from the core of an aero-engine is challenging to quantify since the understanding of its generation and propagation is less advanced than that for noise sources of other engine components. To overcome the difficulties associated with dynamic measurements in the crowded core region, dedicated experiments have been set up in order to investigate mainly two processes: the propagation of direct combustion noise through the subsequent turbine stage, and the generation of indirect combustion noise by the passage of inhomogeneities of entropy and vorticity through the turbine stage. In the current work, a transonic turbine stage was exposed to isolated and well-characterized acoustic, entropic, and vortical disturbances. The incoming and outgoing sound fields were analyzed in detail by two large arrays of microphones. The mean flow field and the disturbances were carefully mapped by several aerodynamic and thermal probes. The results include transmission and reflection characteristics of the turbine stage, the latter was found to be much lower than commonly assumed. The modal decomposition of the acoustic field in the upstream and downstream section shows additional modes besides the expected rotor–stator interaction modes. At the frequency of entropy or vorticity excitation, respectively, a significant increase of the overall sound power level was observed.

References

1.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
2.
Strahle
,
W. C.
,
1978
, “
Combustion Noise
,”
Prog. Energy Combust. Sci.
,
4
(
3
), pp.
157
176
.
3.
Bake
,
F.
,
Richter
,
C.
,
Mühlbauer
,
B.
,
Kings
,
N.
,
Röhle
,
I.
,
Thiele
,
F.
, and
Noll
,
B.
,
2009
, “
The Entropy Wave Generator (EWG): A Reference Case on Entropy Noise
,”
J. Sound Vib.
,
326
(
3–5
), pp.
574
598
.
4.
Bake
,
F.
,
Kings
,
N.
,
Fischer
,
A.
, and
Röhle
,
I.
,
2009
, “
Indirect Combustion Noise: Investigations of Noise Generated by the Acceleration of Flow Inhomogeneities
,”
Acta Acust. Acust.
,
95
(
3
), pp.
461
469
.
5.
Leyko
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Comparison of Direct and Indirect Combustion Noise Mechanisms in a Model Combustor
,”
AIAA J.
,
47
(
11
), pp.
2709
2716
.
6.
Muthukrishnan
,
M.
,
Strahle
,
W. C.
, and
Neale
,
D. H.
,
1978
, “
Separation of Hydrodynamic, Entropy, and Combustion Noise in a Gas Turbine Combustor
,”
AIAA J.
,
16
(
4
), pp.
320
327
.
7.
Cumpsty
,
N. A.
, and
Marble
,
F. E.
,
1977
, “
Core Noise From Gas Turbine Exhausts
,”
J. Sound Vib.
,
54
(
2
), pp.
297
309
.
8.
Knobloch
,
K.
,
Werner
,
T.
, and
Bake
,
F.
,
2015
, “
Noise Generation in Hot Nozzle Flow
,”
ASME
Paper No. GT2015-43702.
9.
Mazur
,
M.
,
Tao
,
W.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
, and
Ducruix
,
S.
,
2015
, “
Experimental and Analytical Study of the Acoustic Properties of a Gas Turbine Model Combustor With a Choked Nozzle
,”
ASME
Paper No. GT2015-43013.
10.
Holewa
,
A.
,
Lesnik
,
S.
,
Ashcroft
,
G.
, and
Guerin
,
S.
,
2015
, “
CFD-Based Investigation of Turbine Tonal Noise Induced by Steady Hot Streaks
,”
11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
(
ETC
), Madrid, Spain, Mar. 23–27, Paper No. ETC2015-182.
11.
Pinelli
,
L.
,
Poli
,
F.
,
Arnone
,
A.
,
Guérin
,
S.
,
Holewa
,
A.
,
Aparicio
,
J. R. F.
,
Puente
,
R.
,
Torzo
,
D.
,
Favre
,
C.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2015
, “
On the Numerical Evaluation of Tone Noise Emissions Generated by a Turbine Stage: An In-Depth Comparison Among Different Computational Methods
,”
ASME
Paper No. GT2015-42376.
12.
Bake
,
F.
,
Gaetani
,
P.
,
Persico
,
G.
,
Neuhaus
,
L.
, and
Knobloch
,
K.
,
2016
, “
Indirect Noise Generation in a High Pressure Turbine Stage
,”
AIAA
Paper No. 2016-3004.
13.
Knobloch
,
K.
,
Holewa
,
A.
,
Guerin
,
S.
,
Mahmoudi
,
Y.
,
Hynes
,
T.
, and
Bake
,
F.
,
2016
, “
Noise Transmission Characteristics of a High Pressure Turbine Stage
,”
AIAA
Paper No. 2016-3001.
14.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2007
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps—Part I: Three-Dimensional Time-Averaged Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
572
579
.
15.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2007
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps—Part II: Unsteady Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
580
590
.
16.
Gaetani
,
P.
,
Persico
,
G.
, and
Osnaghi
,
C.
,
2010
, “
Effects of Axial Gap on the Vane-Rotor Interaction in a Low Aspect Ratio Turbine Stage
,”
AIAA J. Propul. Power
,
26
(
2
), pp.
325
334
.
17.
Persico
,
G.
,
Mora
,
A.
,
Gaetani
,
P.
, and
Savini
,
M.
,
2012
, “
Unsteady Aerodynamics of a Low Aspect Ratio Turbine Stage: Modeling Issues and Flow Physics
,”
ASME J. Turbomach.
,
134
(
6
), p.
061030
.
18.
Gaetani
,
P.
,
Persico
,
G.
,
Spinelli
,
A.
,
Sandu
,
C.
, and
Niculescu
,
F.
,
2015
, “
Entropy Wave Generator for Indirect Combustion Noise Experiments in a High-Pressure Turbine
,” 11th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics (
ETC
), Madrid, Spain, Mar. 23–27, Paper No. ETC2015-025.
19.
Persico
,
G.
,
Gaetani
,
P.
, and
Guardone
,
A.
,
2005
, “
Dynamic Calibration of Fast-Response Probes in Low-Pressure Shock Tubes
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1751
1759
.
20.
Persico
,
G.
,
Gaetani
,
P.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1741
1750
.
21.
Perdichizzi
,
A.
,
1990
, “
Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
643
651
.
22.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE
Paper No. 620532.
23.
Bechert
,
D. W.
,
1980
, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
,
70
(
3
), pp.
389
405
.
You do not currently have access to this content.