A new formulation of the mixing plane boundary condition to analyze the steady-state interaction between adjacent rows of a turbomachine, used in conjunction with steady two-dimensional nonreflecting boundary conditions, is presented. Existing mixing plane formulations rely on the differences between some variables at the interface of adjacent rows to determine the boundary condition. These differences are driven to zero as the case is converged to the steady state. By contrast, the proposed approach determines the differences that result in the conservation of mass, momentum, and energy after the boundary condition is enforced, ensuring conservation at any instant during the iterative process. The reverse flow within the mixing plane boundary is naturally treated, but both inlet and outlet boundary conditions fail when the mixing plane normal velocity tends to zero, giving rise to sharp variations of the fluid variables that must be properly limited to prevent convergence problems. Some examples will be given to demonstrate the ability of the new method to resolve these cases while preserving the boundary condition robustness.

References

1.
Saxer
,
A. P.
,
1992
, “
A Numerical Analysis of 3-D Inviscid Stator/Rotor Interactions Using Non-Reflecting Boundary Conditions
,” Ph.D. thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
2.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.
3.
Chima
,
R. V.
,
1998
, “
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
,”
AIAA
Paper No. 98-0968.
4.
Hall
,
E.
,
Delaney
,
R.
,
Lynn
,
S.
, and
Veres
,
J.
,
1998
, “
Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis
,”
34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, Cleveland, OH, July 13–15,
AIAA
Paper No. 1998-3119.
5.
Holmes
,
G.
,
2008
, “
Mixing Planes Revisited: A Steady Mixing Plane Approach Redesign to Combine High Levels of Conservation and Robustness
,”
ASME
Paper No. GT2008-51296.
6.
Wang
,
D. X.
,
2014
, “
An Improved Mixing Plane Method for Analyzing Steady Flow Through Multiple-Blade-Row Turbomachines
,”
ASME J. Turbomach.
,
136
(
8
), p.
081003
.
7.
Giles
,
M.
,
1990
, “
Non-Reflecting Boundary Conditions for Euler Equations
,”
AIAA J.
,
28
(
12
), pp.
2050
2057
.
8.
Burgos
,
M. A.
,
Contreras
,
J.
, and
Corral
,
R.
,
2011
, “
Efficient Edge-Based Rotor/Stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
.
9.
Gisbert
,
F.
,
Corral
,
R.
, and
Pueblas
,
J.
,
2013
, “
Selection of Implicit CFD Techniques for Unstructured Grids and Turbomachinery Applications
,” 21st Computational Fluid Dynamics Conference, San Diego, CA, June 24-27,
AIAA
Paper No. 2013-2575.
10.
Gómez
,
R.
,
2000
, “
Una Estructura de Datos basada en Aristas para la Resolución de las Ecuaciones de Navier–Stokes
,” Ph.D. thesis, Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain.
11.
Luo
,
H.
,
Baum
,
J.
, and
Löhner
,
R.
,
1994
, “
Edge-Based Finite Element Scheme for the Euler Equations
,”
AIAA J.
,
32
(
6
), pp.
1183
1190
.
12.
Martinelli
,
L.
,
1987
, “
Calculations of Viscous Flow With a Multigrid Method
,” Ph.D. thesis, Princeton University, Princeton, NJ.
13.
Pierce
,
N.
,
1997
, “
Preconditioned Multigrid Methods for Compressible Flow Calculations on Stretched Meshes
,” Ph.D. thesis, University of Oxford, Oxford, UK.
14.
Mavriplis
,
D.
,
1999
, “
Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flows
,”
AIAA J.
,
37
(
10
), pp.
1222
1230
.
15.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada, CA
.
16.
Khronos OpenCL Working Group
,
2013
, “
OpenCL 2.0 Specification
,” Khronos Group, Beaverton, OR, https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
17.
Message-Passing Interface Forum, 2009, “
MPI: A Message-Passing Interface Standard Version 2.2
,” University of Tennessee, Knoxville, TN, http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
18.
Contreras
,
J.
, and
Corral
,
R.
,
2000
, “
Quantitative Influence of the Steady Non-Reflecting Boundary Conditions on Blade-to-Blade Computations
,”
ASME
Paper 2000-GT-0515.
19.
Dixon
,
J.
,
Valencia
,
A. G.
,
Coren
,
D.
,
Eastwood
,
D.
, and
Long
,
C.
,
2013
, “
Main Annulus Gas Path Interactions—Turbine Stator Well Heat Transfer
,”
ASME J. Turbomach.
,
136
(
2
), p.
021010
.
20.
Burgos
,
M. A.
,
Chia
,
J. M.
,
Corral
,
R.
, and
López
,
C.
,
2009
, “
Rapid Meshing of Turbomachinery Rows Using Semi-Unstructured Conformal Grids
,”
Eng. Comput.
,
26
(
4
), pp.
351
362
.
21.
Holzinger
,
F.
,
Wartzek
,
F.
,
Jüngst
,
M.
,
Schiffer
,
H.-P.
, and
Leichtfuss
,
S.
,
2016
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors—Rotating Instabilities and Flutter
,”
J. Turbomach.
,
138
(
4
), p.
041006
.
You do not currently have access to this content.