Large-eddy simulations (LES) of wall bounded, low Mach number turbulent flows are conducted using an unstructured finite-volume solver of the compressible flow equations. The numerical method employs linear reconstructions of the primitive variables based on the least-squares approach of Barth. The standard Smagorinsky model is adopted as the subgrid term. The artificial viscosity inherent to the spatial discretization is maintained as low as possible reducing the dissipative contribution embedded in the approximate Riemann solver to the minimum necessary. Comparisons are also discussed with the results obtained using the implicit LES (ILES) procedure. Two canonical test-cases are described: a fully developed pipe flow at a bulk Reynolds number Reb = 44 × 103 based on the pipe diameter, and a confined rotor–stator flow at the rotational Reynolds number ReΩ = 4 × 105 based on the outer radius. In both cases, the mean flow and the turbulent statistics agree well with existing direct numerical simulations (DNS) or experimental data.

References

1.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.10.1115/1.1772408
2.
Boudet
,
J.
,
Autef
, V
. N. D.
,
Chew
,
J. W.
,
Hills
,
N. J.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
, pp.
373
383
.
3.
O'Mahoney
,
T.
,
Hills
,
N. J.
, and
Chew
,
J. W.
,
2012
, “
Sensitivity of LES Results From Turbine Rim Seal to Changes in Grid Resolution and Sector Size
,”
Prog. Aerosp. Sci.
,
52
, pp.
48
55
.10.1016/j.paerosci.2011.09.003
4.
Barth
,
T.
,
1993
, “
Recent Developments in High Order K-Exact Reconstruction on Unstructured Meshes
,”
AIAA
Paper No. 1993-0668.10.2514/6.1993-668
5.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” Ph.D. thesis, Oxford University, Oxford, UK.
6.
Gordnier
,
R. E.
, and
Visbal
,
R. M.
,
2005
, “
Compact Difference Scheme Applied to Simulation of Low-Sweep Delta Wing Flow
,”
AIAA J.
,
43
(
8
), pp.
1744
1752
.10.2514/1.5403
7.
Hahan
,
M.
, and
Drikakis
,
D.
,
2009
, “
Implicit Large-Eddy Simulation of Swept Wing Flow Using High Resolution Methods
,”
AIAA J.
,
47
(
3
), pp.
618
630
.10.2514/1.37806
8.
Raverdy
,
B.
,
Mary
,
I.
, and
Sagaut
,
P.
,
2001
, “
Large-Eddy Simulation of the Flow Around a Low Pressure Turbine Blade
,”
Direct and Large-Eddy Simulation (ERCOFTAC Series, Vol. IV)
,
B. J.
Geurts
,
R.
Friedrich
, and
O.
Métais
, eds.,
Kluwer
, Dordrecht, The Netherlands.
9.
Tucker
,
P. G.
,
2004
, “
Novel MILES Computations for Jet Flows and Noise
,”
Int J. Heat Fluid Flow
,
25
(
4
), pp.
625
635
.10.1016/j.ijheatfluidflow.2003.11.021
10.
Boris
,
J. P.
,
Grinstein
,
F. F.
,
Oran
,
E. S.
, and
Kolbe
,
R. L.
,
1992
, “
New Insights Into Large Eddy Simulation
,”
J. Fluid Dyn. Res.
,
10
(
4–6
), pp.
199
228
.10.1016/0169-5983(92)90023-P
11.
Rider
,
W. J.
, and
Drikakis
,
D.
,
2002
, “
High Resolution Methods for Computing Turbulent Flows
,”
Turbulent Flow Computation
(Fluid Mechanics and Its Applications, Vol. 66), Drikakis, D. and Geurts, B. J., eds., Kluwer, Dordrecht, The Netherlands.10.1007/0-306-48421-8_2
12.
Garnier
,
E.
,
Mossi
,
M.
,
Sagaut
,
P.
,
Comte
,
P.
, and
Deville
,
M.
,
1999
, “
On the Use of Shock-Capturing Schemes for Large-Eddy Simulation
,”
J. Comput. Phys.
,
153
(
2
), pp.
273
311
.10.1006/jcph.1999.6268
13.
Camarri
,
S.
,
Salvietti
,
V.
,
Koobus
,
B.
, and
Dervieux
,
A.
,
2002
, “
Large-Eddy Simulation of a Bluff-Body Flow on Unstructured Grids
,”
Int. J. Numer. Methods Fluids
,
40
(
11
), pp.
1431
1460
.10.1002/fld.425
14.
Hills
,
N.
,
2007
, “
Achieving High Parallel Performance for an Unstructured Unsteady Turbomachinery CFD Code
,”
Aeronaut. J
.
,
111
(1117), pp.
185
193
.
15.
Hirsch
,
C.
,
1990
,
Numerical Computation of Internal and External Flows
,
Wiley
, New York.
16.
Ollivier-Gooch
,
C.
,
Nejat
,
A.
, and
Michalak
,
C.
,
2009
, “
Obtaining and Verifying High-Order Unstructured Finite-Volume Solutions to the Euler Equations
,”
AIAA J.
,
47
(
9
), pp.
2105
2120
.10.2514/1.40585
17.
Okong'o
,
N.
,
Knight
,
D. D.
, and
Zhou
,
G.
,
2000
, “
Large Eddy Simulations Using an Unstructured Grid Compressible Navier-Stokes Algorithm
,”
Int. J. Comput. Fluid Dyn.
,
13
(
4
), pp.
303
326
.10.1080/10618560008940904
18.
Piomelli
,
U.
,
1999
, “
Large-Eddy Simulation: Achievements and Challenges
,”
Prog. Aerosp. Sci.
,
35
(
4
), pp.
335
362
.10.1016/S0376-0421(98)00014-1
19.
Mellen
,
C. P.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Lessons From LESFOIL Project on Large-Eddy Simulation of Flow Around an Airfoil
,”
AIAA J.
,
41
(
4
), pp.
573
581
.10.2514/2.2005
20.
Kok
,
J. C.
,
2009
, “
A High-Order Low Dispersion Symmetry-Preserving Finite-Volume Method for Compressible Flow on Curvilinear Grids
,”
J. Comput. Phys.
,
228
(
18
), pp.
6811
6832
.10.1016/j.jcp.2009.06.015
21.
Wu
,
X.
, and
Moin
,
P.
,
2008
, “
A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
608
, pp.
81
112
.10.1017/S0022112008002085
22.
Xu
,
X.
,
Lee
,
J. S.
, and
Pletcher
,
R. H.
,
2005
, “
A Compressible Finite Volume Formulation for Large Eddy Simulation of Turbulent Pipe Flows at Low Mach Number in Cartesian Coordinates
,”
J. Comput. Phys.
,
203
(
1
), pp.
22
48
.10.1016/j.jcp.2004.08.005
23.
Rudman
,
M.
, and
Blackburn
,
H. M.
,
1999
, “
Large Eddy Simulation of Turbulent Pipe Flow
,”
Second International Conference on CFD in the Minerals and Process Industries
,
Melbourne
, Australia, Dec. 6–8.
24.
Schmidt
,
S.
,
Mclver
,
D. M.
,
Blackburn
,
H. M.
,
Rudman
,
M.
, and
Nathan
,
G. J.
,
2001
, “
Spectral Element Based Simulation of Turbulent Pipe Flow
,”
14th Australasian Fluid Mechanics Conference
,
Adelaide
, Australia, Dec. 10–14.
25.
Viazzo
,
S.
,
Poncet
,
S.
,
Serre
,
E.
,
Randriamampianina
,
A.
, and
Bontoux
,
P.
,
2012
, “
High-Order Large Eddy Simulations of Confined Rotor–Stator Flows
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
63
75
.10.1007/s10494-011-9345-0
26.
Séverac
,
E.
,
Poncet
,
S.
,
Serre
,
E.
, and
Chauve
,
M. P.
,
2007
, “
Large Eddy Simulation and Measurements of Turbulent Enclosed Rotor–Stator Flows
,”
Phys. Fluids
,
19
(8), p.
085113
.10.1063/1.2759530
27.
Serre
,
E.
,
Tuliska-Sznitko
,
E.
, and
Bontoux
,
P.
,
2004
, “
Coupled Theoretical and Numerical Study of the Flow Transition Between a Rotating and a Stationary Disk
,”
Phys. Fluids
,
16
(
3
), pp.
688
706
.10.1063/1.1644144
28.
Lygren
,
M.
, and
Andersson
,
H.
,
2001
, “
Turbulent Flow Between a Rotating and a Stationary Disk
,”
J. Fluid Mech.
,
426
, pp.
297
326
.10.1017/S0022112000002287
29.
Itoh
,
M.
,
Yamada
,
Y.
,
Imao
,
S.
, and
Gonda
,
M.
,
1992
, “
Experiments on Turbulent Flow Due to an Enclosed Rotating Disk
,”
Exp. Therm. Fluid Sci.
,
5
(
3
), pp.
359
368
.10.1016/0894-1777(92)90081-F
You do not currently have access to this content.