This paper describes a fluid-structure interaction (FSI) numerical method in frequency domain to improve the overall understanding of the mechanisms of compressor blade stall flutter and to identify the key flutter parameters. The numerical method, whose accuracy is verified by comparing the numerical predicted stall flutter boundary with that measured through engine rig tests in a compressor rotor, is applied to investigate the effects of blade mode, reduced velocity, and interblade phase angle (IBPA) on flutter stability, and to reveal the flutter mechanisms directly related to shock wave properties and flow separation effects. It is found that the shock wave on the suction surface and the separation area behind it are important flutter inducements.

References

1.
Marshall
,
J. G.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluid. Struct.
,
10
, pp.
237
267
.10.1006/jfls.1996.0015
2.
Hall
,
K. C.
,
Kielb
,
R. E.
,
Ekici
,
K.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2005
, “
Recent Advancements in Turbomachinery Aeroelastic Design Analysis
,” AIAA Paper No. 2005-14.
3.
Carta
,
F. O.
,
1967
, “
Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
J. Eng. Power
,
89
(
3
), pp.
419
426
. 10.1115/1.3616708
4.
Snyder
,
L. E.
, and
Commerford
,
G. L.
,
1974
, “
Supersonic Unstalled Flutter in Fan Rotor: Analytical and Experimental Results
,” ASME Paper No. 74-GT-40.
5.
Bendiksen
,
O. O.
,
1991
, “
A New Approach to Computational Aeroelasticity
,” AIAA Paper No. 91-0939.
6.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbine Power
,
119
, pp.
742
775
.10.1115/1.2817053
7.
Cinnella
,
P.
,
Palma
,
D.
,
Pascazio
,
G.
, and
Napolitano
,
M.
,
2004
, “
A Numerical Method for Turbomachinery Aeroelasticity
,”
ASME J. Turbomach.
,
126
, pp.
310
316
.10.1115/1.1738122
8.
Panovski
,
J.
, and
Kielb
,
R. E.
,
2000
, “
A Design Method to Prevent Low Pressure Turbine Blade Flutter
,”
ASME J. Eng. Gas Turbine Power
,
122
, pp.
89
98
.10.1115/1.483180
9.
Nowinski
,
M.
, and
Panovsky
,
J.
,
2000
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbine Power
,
122
, pp.
82
88
.10.1115/1.483179
10.
Carta
,
F. O.
, and St.
Hilaire
,
A. O.
,
1980
, “
Effect of Interblade Phase Angle and Incidence Angle on Cascade Pitching Stability
,”
J. Eng. Power
,
102
(
2
), pp.
391
396
.10.1115/1.3230268
11.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Marshall
,
J. G.
, and
Imregun
,
M.
,
2001
, “
Mechanisms and Prediction Methods for Fan Blade Stall Flutter
,”
J. Propul. Power
,
17
(
5
), pp.
1100
1108
.10.2514/2.5850
12.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2009
, “
Mechanisms for Wide-Chord Fan Blade Flutter
,” ASME Paper No. GT2009-60098.
13.
Thommassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2007
, “
Blade Tip Clearance Flow and Compressor NSV: The Jet Core Feedback Theory as the Coupling Mechanism
,” ASME Paper No. GT2007-27286.
14.
Drolet
,
M.
,
Thomassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2009
, “
Numerical Investigation Into Non-Synchronous Vibration of Axial Flow Compressors by the Resonant Tip Clearance Flow
,”
Struct. Dyn.
,
6
, Parts A and B, p.
487
. 10.1115/GT2009-59074
15.
Spiker
,
M. A.
,
2008
, “
Development of an Efficient Design Method for Non-Synchronous Vibrations
,”
Ph.D. thesis
,
Duke University
,
Durham, NC
.
16.
Song
,
Z. H.
,
1993
,
Typical Fault Analysis of Aero-Engine
,
BUAA
,
Beijing
(in Chinese).
You do not currently have access to this content.