Abstract

A fully cooled turbine stage is utilized to investigate the combined effects of turbine stage cooling variation and high-pressure turbine (HPT) vane inlet temperature profile on the aerodynamics and heat transfer of the turbine stage operating at the proper design corrected conditions. Part I of this paper describes the overall experimental matrix, the influence of the cooling mass flows, and temperature profiles from an aerodynamic perspective. The measurements include internal and external pressures for the blade airfoil. Part II of this paper focuses on the influence of these parameters on the heat transfer to the blade airfoil and the stationary blade shroud. The major results show that cooling levels do not significantly affect the external pressure distributions over the majority of the blade and vane. However, aerodynamic effects of cooling levels and temperature profiles are seen for the vane and blade pressure loading on the suction surfaces. The magnitude of these effects ranges from 5% to 10% of the local measurement for the reference case, which is the uniform inlet profile with nominal cooling for this study. Inlet temperature profiles and cooling levels have comparable impacts on pressure loading, but their relative influence changes with location, and Reynolds number and corrected speed variations have the lowest impact on pressure loading changes, with changes below 5% of the local measurements. Another important result is that unlike uncooled experiments, the proper normalizing variable for pressures aft of the vane is not the inlet pressure but a “rotor reference pressure,” which adjusts the total inlet pressure by the increase in pressure resulting from the additional cooling mass flows. For the rotor, this consists primarily of the vane trailing edge cooling flows. This simplified model accounts for the effects of the vane cooling, and isolates the changes due to blade cooling. The spread of the cooling flows through the stage is important to the surface heat-flux, and has an impact on pressure loadings on the suction surface. The data establishes important guidelines for modelers of cooling flows. The changes observed on the suction side of the airfoils are real, but quite small from an engineering design perspective. Thus the pressure levels are stable and relatively independent of cooling levels, which is critical for good heat-transfer predictions.

1.
Dunn
,
M.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
637
686
.
2.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Southworth
,
S. A.
,
Chen
,
J. -P.
,
Heitland
,
G.
, and
Liu
,
J.
, 2009, “
Time-Accurate Predictions for a Fully Cooled High Pressure Turbine Stage—Part II: Methodology for Quantification of Prediction Quality
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031004
.
3.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2008, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part I: Experimental Approach
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021015
.
4.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2008, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine—Part II: Experimental Results
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021016
.
5.
Southworth
,
S.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Chen
,
J. P.
,
Heitland
,
G.
, and
Liu
,
J.
, 2009, “
Time-Accurate Predictions for a Fully Cooled High-Pressure Turbine Stage: Part I Comparison of Predictions With Data
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031003
.
6.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
, 1991, “
Film Cooling on a Gas Turbine Rotor Blade
,” ASME Paper No. 91-GT-279.
7.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Joslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
8.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1992, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,” ASME Paper No. 92-GT-201.
9.
Kercher
,
D. M.
, 1998, “
A Film-Cooling CFD Bibliography: 1971–1996
,”
Int. J. Rotating Mach.
1023-621X,
4
(
1
), pp.
61
72
.
10.
Kercher
,
D. M.
, 2000, “
Turbine Airfoil Leading Edge Film Cooling Bibliography
,”
Int. J. Rotating Mach.
1023-621X,
6
(
5
), pp.
313
319
.
11.
Elovic
,
E.
, and
Koffel
,
W. K.
, 1983, “
Some Considerations in the Thermal Design of Turbine Airfoil Cooling Systems
,”
Int. J. Turbo Jet Engines
0334-0082,
1
, pp.
45
66
.
12.
Hajek
,
T. J.
,
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Higgins
,
A. W.
, and
Steuber
,
G. D.
, 1991, “
Effects of Rotation on Coolant Passage Heat Transfer Volume I—Coolant Passages With Smooth Walls
,” NASA Contractor, Report No. 4396.
13.
Johnson
,
B. V.
,
Wagner
,
J. H.
, and
Steuber
,
G. D.
, 1993, “
Effects of Rotation on Coolant Passage Heat Transfer Volume II—Coolant Passages With Trips Normal and Skewed to the Flow
,” NASA Contractor, Report No. 4396.
14.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
, 1984, “
Measurement and Analysis of Heat Flux in a Turbine Stage: Part II—Discussion of Results and Comparison With Prediction
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
234
240
.
15.
Hildritch
,
M. A.
, and
Ainsworth
,
R. W.
, 1990, “
Unsteady Heat Transfer Measurements on a Rotating Gas Turbine Blade
,” ASME Paper No. 90-GT-175.
16.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Hanes
,
R.
, and
Norton
,
R. J. G.
, 1989, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
1
7
.
17.
Denos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
, 2000, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,” ASME Paper No. 2000-GT-435.
18.
Haldeman
,
C. D.
,
MacArthur
,
M. G.
, and
Maurawski
,
C. G.
, 1992, “
The USAF Advanced Turbine Aerothermal Research Rig (ATARR)
,”
AGARD Conf. Proc.
0549-7191,
527
, pp.
20
-1–20-
14
.
19.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
, 1985, “
High Frequency Response Heat Flux Gauge
,”
Rev. Sci. Instrum.
0034-6748,
75
(
4
), pp.
639
649
.
20.
Povey
,
T.
, and
Qureshi
,
I.
, 2009, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031009
.
21.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
, 2007, “
The Effects of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
129
(
1
), pp.
32
43
.
22.
Kapteijn
,
C.
,
Amecke
,
J.
, and
Michelassi
,
V.
, 1996, “
Aerodynamic Performance of a Transonic Turbine Guide Vane With Trailing Edge Coolant Injection: Part I—Experimental Approach
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
519
528
.
23.
Sieverding
,
C. H.
,
Arts
,
T.
,
Denos
,
R.
, and
Martelli
,
F.
, 1996, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
291
299
.
24.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2000, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
0723-4864,
29
, pp.
117
129
.
25.
Ong
,
J.
, and
Miller
,
R. J.
, 2008, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,” ASME Paper No. GT2008-50971.
26.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
, and
de La Loma
,
A.
, 2008, “
Aerothermal Impact of Stator-Rim Flow and Rotor Platform Film Cooling on a Transonic Turbine Stage
,” ASME Paper No. GT2008-51295.
27.
Haldeman
,
C. W.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
, 2004, “
Design, Construction and Operation of a Combustor Emulator for Short-Duration High-Pressure Turbine Experiments
,”
AIAA Joint Propulsion Conference
, Ft. Lauderdale, FL, Paper No. AIAA-2004-3829.
28.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
You do not currently have access to this content.