Gas turbine performance improvement requires efficient and accurate prediction tools for film-cooling of high pressure turbine blades. Use of computational fluid dynamics in the cooling design faces a challenge due to a wide range of length scales to be resolved. The difficulty is also seriously compounded by the basic feature that each blade has a large number of cooling holes. In the present paper, a new spectral approach is proposed to address this modeling difficulty. The motivation is to resolve the aerothermal flow field and mixing process of film-cooling by the numerical solution to the first principle based governing equations while avoiding large computational resources required in directly solving a large number of cooling holes. By using a spectral representation for each corresponding mesh point, the block-to-block (hole-to-hole) variation can be accurately and efficiently modeled. The number of mesh blocks (cooling holes) to be solved is then dictated by the number of unknowns required to determine the spectrum. Consequently, the aerothermal field for a large number of cooling hole blocks can be obtained by solving a much smaller set of blocks. The modeling consideration, method formulation, validation, and demonstration results will be presented.

1.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1980, “
Full-Coverage Film Cooling—Part I: Comparison of Heat Transfer Data for Three Injection Angles
,”
ASME J. Eng. Power
0022-0825,
102
(
4
), pp.
1000
1005
.
2.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1980, “
Full-Coverage Film Cooling—Part II: Heat Transfer Data and Numerical Simulation
,”
ASME J. Eng. Power
0022-0825,
102
(
4
), pp.
1006
1012
.
3.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
, 1994, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
358
368
.
4.
Garg
,
V. K.
, and
Gaugler
,
R. E.
, 1997, “
Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
343
351
.
5.
Garg
,
V. K.
, and
Abhari
,
R. S.
, 1997, “
Comparison of Predicted and Experimental Nusselt Number for a Film-Cooled Rotating Blade
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
452
460
.
6.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 1997, “
A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flow-Field
,”
ASME J. Turbomach.
0889-504X,
119
(
4
), pp.
777
785
.
7.
Lakehal
,
D.
,
Theodoridis
,
G. S.
, and
Rodi
,
W.
, 1998, “
Computation of Film Cooling of a Flat Plate by Lateral Injection From a Row of Holes
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
418
430
.
8.
McGovern
,
K. T.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
113
121
.
9.
Heidmann
,
J. D.
,
Rigby
,
D. L.
, and
Ameri
,
A. A.
, 2000, “
Three Dimensional Coupled Internal/External Simulations of a Film-Cooled Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
348
359
.
10.
Southworth
,
S. A.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Chen
,
J. -P.
,
Heitland
,
G.
, and
Liu
,
J.
, 2009, “
Time-Accurate Predictions for a Fully Cooled High-Pressure Turbine Stage—Part I: Comparison of Predictions With Data
,”
ASME J. Turbomach.
0889-504X,
129
(
3
), p.
031003
.
11.
Tyagi
,
M.
, and
Acharya
,
S.
, 2003, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
0889-504X,
125
(
4
), pp.
734
742
.
12.
Rozati
,
A.
, and
Tafti
,
D. K.
, 2007, “
Large Eddy Simulation of Leading Edge Film Cooling Part I: Computational Domain and Effect of Coolant Inlet Condition
,”
ASME
Paper No. GT2007-27689.
13.
Rozati
,
A.
, and
Tafti
,
D. K.
, 2008, “
Large Eddy Simulation of Leading Edge Film Cooling—Part II: Heat Transfer and Effect of Blowing Ratio
,”
ASME J. Turbomach.
0889-504X,
130
(
4
), p.
041015
.
14.
Burdet
,
A.
, and
Abhari
,
R. S.
, 2007, “
Three-Dimensional Flow Prediction and Improvement of Holes Arrangement of a Film-Cooled Turbine Blade Using a Feature-Based Jet Model
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
258
268
.
15.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
, 2007, “
Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
221
231
.
16.
Saumweber
,
C.
, and
Schutz
,
A.
, 2008, “
Comparison the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
ASME
Paper No. GT 2008-51036.
17.
He
,
L.
, 1990, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
0889-504X,
112
(
4
), pp.
714
722
.
18.
He
,
L.
, 1992, “
A Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
0001-1452,
30
(
11
), pp.
2730
2735
.
19.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
, 2002, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
0748-4658,
18
, pp.
1139
1152
.
20.
Ning
,
W.
, and
He
,
L.
, 1998, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Non-Linear Harmonic Euler Methods
,”
ASME J. Turbomach.
0889-504X,
120
(
3
), pp.
508
514
.
21.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
, 2002, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
0001-1452,
40
(
5
), pp.
879
886
.
22.
He
,
L.
, 2006, “
Fourier Modelling of Nonaxisymmetrical Steady and Unsteady Flows
,”
J. Propul. Power
0748-4658,
22
(
1
), pp.
197
201
.
23.
He
,
L.
, 2008, “
Efficient Computational Model for Non-Axisymmetric Flow and Heat Transfer in Rotating Cavity
,”
ASME
Paper No. GT 2008-51132.
24.
Corral
,
R.
, and
Crespo
,
J.
, 2009, “
A Hybrid Unstructured/Spectral Method for the Resolution of Navier–Stokes Equations
,”
ASME
Paper No. GT 2009-59491.
25.
He
,
L.
, 2000, “
3D Navier–Stokes Analysis of Rotor-Stator Interactions in Axial Flow Turbines
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
214
(
1
), pp.
13
22
.
26.
Jameson
,
A.
, 1991, Time-Dependent Calculations Using Multi-Grid, With Applications to Unsteady Flows Past Airfoil and Wings, AIAA Paper No. 91-1596.
27.
Chana
,
K. S.
,
Povey
,
T.
, and
Jones
,
T. V.
, 2003, “
Heat Transfer and Aerodynamics of Intermediate Pressure Nozzle Guide Vane With and Without Inlet Temperature Non-Uniformity
,”
ASME
Paper No. GT 2003-38466.
28.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
, 2007, “
Effect of Hot-Streak Counts on Turbine Blade Heat Load and Forcing
,”
J. Propul. Power
0748-4658,
23
(
6
), pp.
1235
1241
.
You do not currently have access to this content.