The influence of hot-streak magnitude and alignment relative to the vane leading edge on blade row heat flux is investigated for a one and one-half stage high-pressure turbine with a film-cooled vane, purge cooling, and uncooled blades. The full-stage turbine is operated at design-corrected conditions. In addition to investigating the impact of different hot-streak characteristics, this study also looks at the interaction of cooling flow with the hot streaks. This paper builds on the investigation of profile migration utilizing temperature measurements presented in Part I and the heat transfer measurements presented in Part II. Hot streaks aligned with the vane midpitch have a greater impact on blade temperatures and heat-flux values than hot streaks aligned with the vane leading edge. The leading edge hot streaks tend to be mixed out over the surface of the vane. The magnitude of the hot streak is observed to have the largest influence on the temperature and heat flux for the downstream blade. Time-accurate measurements confirm these conclusions and indicate that further analysis of the time-accurate data is warranted. Film cooling is found to impact a hot-streak profile in a way similar to that observed for a radial profile. Differences in core to coolant temperature ratio cause the uniform profile to show different coolant effects, but the overall spread of the cooling appears similar.

1.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2012, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
0889-504X
134
(
1
), p.
011006
.
2.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2012, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part II: Influence of Inlet Temperature Profile on Blade Row and Shroud
,”
ASME J. Turbomach.
0889-504X
134
(
1
), p.
011007
.
3.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2010, “
Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine, Part I: Influence of Vane Cooling and Disk Cavity Purge Flow
,”
ASME
Paper No. GT2010-22713.
4.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2010, “
Heat Transfer for the Blade of a Cooled One and One-Half Stage High-Pressure Turbine, Part II: Influence of Purge Cooling Variation
,”
ASME
Paper No. GT2010-22715.
5.
Mathison
,
R. M.
,
Wishart
,
M. B.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2010, “
Temperature Predictions and Comparison With Measurements for the Blade Leading Edge and Platform of a 1-1/2 Stage Transonic HP Turbine
,”
ASME
Paper No. GT2010-22987.
6.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1989, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Stage
,”
J. Propul. Power
0748-4658,
5
(
1
), pp.
64
71
.
7.
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1988, “
A Trace Gas Technique to Study Mixing in a Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
110
(
1
), pp.
38
43
.
8.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
9.
Hawthorne
,
W. R.
, 1951, “
Secondary Circulation in Fluid Flow
,”
Proc. R. Soc. London, Ser. A
0950-1207,
206
, pp.
374
387
.
10.
Lakshminarayana
,
B.
, and
Horlock
,
J. H.
, 1973, “
Generalized Expressions for Secondary Vorticity Using Intrinsic Co-Ordinates
,”
J. Fluid Mech.
0022-1120,
59
(
01
), pp.
97
115
.
11.
Roback
,
R. J.
, and
Dring
,
R. P.
, 1993, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part 2—Combined Effects and Analytical Modeling
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
667
674
.
12.
Roback
,
R. J.
, and
Dring
,
R. P.
, 1993, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part 1—Separate Effects
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
657
666
.
13.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
, 2003, “
The Design, Development, and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,”
ASME
Paper No. GT2003-38469.
14.
Chana
,
K. S.
, and
Jones
,
T. V.
, 2002, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME
Paper No. GT-2002-30554.
15.
Chana
,
K. S.
,
Povey
,
T.
, and
Jones
,
T. V.
, 2003, “
Heat Transfer and Aerodynamics of an Intermediate Pressure Nozzle Guide Vane With and Without Inlet Temperature Non-Uniformity
,”
ASME
Paper No. GT2003-38466.
16.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
, 1970, “
Intra-Stator Transport of Rotor Wakes and its Effect on Compressor Performance
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
359
368
.
17.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
, 2007, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
0889-504X,
129
(
1
), pp.
32
43
.
18.
Jenkins
,
S. C.
,
Varadarajan
,
K.
, and
Bogard
,
D. G.
, 2004, “
The Effects of High Mainstream Turbulence and Turbine Vane Film Cooling on the Dispersion of a Simulated Hot Streak
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
203
211
.
19.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
, 2007, “
Scaling of Guide Vane Coolant Profiles and the Reduction of a Simulated Hot Streak
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
619
627
.
20.
Barringer
,
M.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2004, “
Developing a Combustor Simulator for Investigating High Pressure Turbine Aerodynamics and Heat Transfer
,”
ASME
Paper No. GT2004-53613.
21.
Barringer
,
M.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2007, “
Experimental Evaluation of an Inlet Profile Generator for High Pressure Turbine Tests
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
382
393
.
22.
Barringer
,
M.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2009, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), pp.
021008
.
23.
Barringer
,
M.
,
Thole
,
K. A.
,
Polanka
,
M. D.
,
Clark
,
J. P.
, and
Koch
,
P. J.
, 2009, “
Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021010
.
24.
Barringer
,
M.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2009, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021009
.
25.
Ong
,
J.
, and
Miller
,
R. J.
, 2008, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME
Paper No. GT2008-50971.
26.
An
,
B. T.
,
Liu
,
J. J.
, and
Jiang
,
H. D.
, 2009, “
Combined Unsteady Effects of Hot Streak and Trailing Edge Coolant Ejection in a Turbine Stage
,”
ASME
Paper No. GT2009-59473.
27.
Mathison
,
R. M.
, 2009, “
Experimental and Computational Investigation of Inlet Temperature Profile and Cooling Effects on a One and One-Half Stage High-Pressure Turbine Operating at Design-Corrected Conditions
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
You do not currently have access to this content.