The present contribution addresses the aerothermal experimental and computational study of a trapezoidal cross-section model simulating a trailing edge cooling cavity with one rib-roughened wall and slots along two opposite walls. Highly resolved heat transfer distributions for the geometry with and without ribs are achieved using a steady state liquid crystals method in part II of this paper. The reference Reynolds number defined at the entrance of the test section is set at 67,500 for all the experiments. Comparisons are made with the flow field visualizations presented in part I of this paper. The results show the dramatic impact of the flow structures on the local and global heat transfer coefficients along the cavity walls. Of particular importance is the jet deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained using the finite volume, Reynolds-Averaged Navier–Stokes solver Calcul d'Écoulements Diphasiques Réactifs pour l'Énergétique (CEDRE).

1.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
(
3
), pp.
337
362
.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
3.
Chandra
,
P. R.
,
Han
,
J. C.
, and
Lau
,
S. C.
, 1988, “
Effect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
0889-504X,
110
(
2
), pp.
233
241
.
4.
Han
,
J. C.
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Ribs Turbulators
,”
ASME J. Heat Transfer
0022-1481,
110
(
2
), pp.
321
328
.
5.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
, 1992, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
0889-504X,
114
(
4
), pp.
872
880
.
6.
Taslim
,
M. E.
, and
Wadsworth
,
C. M.
, 1997, “
An Experimental Investigation of the Rib Surface-Averaged Heat Transfer Coefficient in a Rib-Roughened Square Passage
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
381
389
.
7.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
, 1980, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
0022-1481,
102
(
1
), pp.
132
137
.
8.
Bunker
,
R. S.
, and
Metzger
,
D. E.
, 1990, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
0889-504X,
112
(
3
), pp.
451
458
.
9.
Cho
,
H. H.
, and
Goldstein
,
R. J.
, 1995, “
Heat/Mass Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part I—Within Holes and on the Back Surface
,”
ASME J. Turbomach.
0889-504X,
117
(
3
), pp.
440
450
.
10.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1998, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
1
), pp.
73
79
.
11.
Pamula
,
G.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
, 2001, “
Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
281
287
.
12.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
, 2006, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
158
165
.
13.
Haiping
,
C.
,
Jingyu
,
Z.
, and
Taiping
,
H.
, 1998, “
Experimental Investigation on Impingement Heat Transfer From Rib-Roughened Surface Within Arrays of Circular Jet
,”
ASME
Paper No. 98-GT-208.
14.
Akella
,
K.
, and
Han
,
J. C.
, 1999, “
Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
3
), pp.
364
371
.
15.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
, 2003, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading Edge Wall
,”
ASME J. Turbomach.
0889-504X,
125
(
4
), pp.
682
691
.
16.
Rhee
,
D. H.
,
Nam
,
Y. W.
, and
Cho
,
H. H.
, 2004, “
Local Heat/Mass Transfer With Various Rib Arrangements in Impingement/Effusion Cooling With Crossflow
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
615
626
.
17.
Cunha
,
F. J.
,
Dahmer
,
M. T.
, and
Chyu
,
M. K.
, 2006, “
Analysis of Airfoil Trailing Edge Heat Transfer and Its Significance in Thermal-Mechanical Design and Durability
,”
ASME J. Turbomach.
0889-504X,
128
(
4
), pp.
738
746
.
18.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
, 1995, “
Experimental Study of the Effects of Bleed Holes on Heat Transfer and Pressure Drop in Trapezoidal Passages With Tapered Turbulators
,”
ASME J. Turbomach.
0889-504X,
117
(
2
), pp.
281
289
.
19.
Kiml
,
R.
,
Mochizuki
,
S.
, and
Murat
,
A.
, 2001, “
Effects of Rib Arrangements on Heat Transfer and Flow Behaviour in a Rectangular Rib-Roughened Passage: Application to Cooling of Gas Turbine Blade Trailing Edge
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
675
681
.
20.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
D.
, 1998, “
Measurements of Heat Transfer Coefficients in Rib-Roughened Trailing-Edge Cavities With Crossover Jets
,”
ASME
Paper No. 98-GT-435.
21.
Çakan
,
M.
, 2000, “
Aero-Thermal Investigation of Fixed Rib-Roughened Internal Cooling Passages
,” Ph.D. thesis, Universitè Catholique de Louvain/Von Karman Institute for Fluid Dynamics, Belgium.
22.
Rau
,
G.
,
Çakan
,
M.
,
Moeller
,
D.
, and
Arts
,
T.
, 1998, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
368
375
.
23.
Casarsa
,
L.
, and
Arts
,
T.
, 2005, “
Experimental Investigation of the Aerothermal Performance of a High Blockage Rib-Roughened Cooling Channel
,”
ASME J. Turbomach.
0889-504X,
127
(
3
), pp.
580
588
.
24.
Chanteloup
,
D.
,
Juaned
,
Y.
, and
Bölcs
,
A.
, 2002, “
Combined 3-D Flow and Heat Transfer Measurements in a 2-Pass Internal Coolant Passage of Gas Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
710
.
25.
Roclawski
,
H.
,
Jacob
,
J. D.
,
Yang
,
T. L.
, and
McDonough
,
J. M.
, 2001, “
Experimental and Computational Investigation of Gas Turbine Blade Cooling Passages
,”
31st AIAA Fluid Dynamics Conference
, Anaheim, CA.
26.
Armellini
,
A.
,
Coletti
,
F.
,
Arts
,
T.
, and
Scholtes
,
C.
, 2010, “
Aerothermal Investigation of a Rib-Roughened Trailing Edge Channel With Crossing-Jets—Part I: Flow Field Analysis
,”
ASME J. Turbomach.
0889-504X,
132
(
1
), p.
011009
.
27.
Akino
,
N.
,
Kinugi
,
T.
,
Ichimiya
,
K.
,
Mitsushiro
,
K.
, and
Ueda
,
M.
, 1989, “
Improved Liquid-Crystal Thermometry Excluding Human Color Sensation
,”
ASME J. Heat Transfer
0022-1481,
111
(
2
), pp.
558
565
.
28.
Kline
,
S. J.
, and
McClintok
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
29.
Chevalier
,
P.
,
Courbet
,
B.
,
Dutoya
,
D.
,
Klotz
,
P.
,
Ruiz
,
E.
,
Troyes
,
J.
, and
Villedieu
,
P.
, 2005, “
CEDRE: Development and Validation of a Multiphysics Computational Software
,”
First European Conference for Aerospace Science (EUCASS)
, Moscow, Russia.
30.
Durbin
,
P. A.
, 1996, “
On the k-ε Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
0142-727X,
17
(
2
), pp.
89
90
.
You do not currently have access to this content.