The present study considers spatially resolved surface heat transfer coefficients and adiabatic wall temperatures on a turbine blade tip in a linear cascade under transonic conditions. Five different measurement and processing techniques using infrared thermography are considered and compared. Three transient methods use the same experimental setup, using a heater mesh to provide a near-instantaneous step-change in mainstream temperature, employing an infrared camera to measure surface temperature. These three methods use the same data but different processing techniques to determine the heat transfer coefficients and adiabatic wall temperatures. Two of these methods use different processing techniques to reconstruct heat flux from the temperature time trace measured. A plot of the heat flux versus temperature is used to determine the heat transfer coefficients and adiabatic wall temperatures. The third uses the classical solution to the 1D nonsteady Fourier equation to determine heat transfer coefficients and adiabatic wall temperatures. The fourth method uses regression analysis to calculate detailed heat transfer coefficients for a quasi-steady-state condition using a thin-foil heater on the tip surface. Finally, the fifth method uses the infrared camera to measure the adiabatic wall temperature surface distribution of a blade tip after a quasi-steady-state condition is present. Overall, the present study shows that the infrared thermography technique with heat flux reconstruction using the impulse method is the most accurate, computationally efficient, and reliable method to obtain detailed, spatially resolved heat transfer coefficients and adiabatic wall temperatures on a transonic turbine blade tip in a linear cascade.

1.
Friedrichs
,
S.
, 2004, “
Turbine Heat Transfer
,”
Cambridge Turbomachinery Course Notes
,
Whittle Laboratory, Department of Engineering, University of Cambridge
,
Cambridge
.
2.
Langston
,
L. S.
, 2007, “
Fahrenheit, 3,600
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
129
(
4
), pp.
34
37
.
3.
Bunker
,
R. S.
, 2001, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
64
79
.
4.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
5.
Metzger
,
D. E.
, and
Rued
,
K.
, 1989, “
Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips: Part I—Sink Flow Effects on Blade Pressure Side
,”
ASME J. Turbomach.
0889-504X,
111
(
3
), pp.
284
292
.
6.
Newton
,
P. J.
,
Krishnababu
,
S. K.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2006, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
300
309
.
7.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
, 2003, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
(
2
), pp.
267
273
.
8.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2005, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
6
), pp.
421
430
.
9.
Anthony
,
R. J.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 1999, “
Development of High-Density Arrays of Thin Film Heat Transfer Gauges
,”
Proceedings of the Fifth ASME/JSME Thermal Engineering Joint Conference
, San Diego, CA, Paper No. AJTE99-6159.
10.
Yang
,
T. T.
, and
Diller
,
T. E.
, 1995, “
Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade
,” ASME Paper No. 95-WA/HT-29.
11.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
12.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
, 2004, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
597
603
.
13.
Schulz
,
A.
, 2000, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
948
956
.
14.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2001, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
758
765
.
15.
Ochs
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2006, “
Design and Commissioning of a Transonic Test Section for the Investigation of Shock Wave-Film Cooling Interactions
,” ASME Paper No. GT2006-90468.
16.
Zhang
,
Q.
,
O’Dowd
,
D.
,
He
,
L.
,
Wheeler
,
A.
, and
Ligrani
,
P.
, 2009, “
Flow and Heat Transfer on and Near a Transonic Turbine Blade Tip
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, International Centre for Heat and Mass Transfer.
17.
Gillespie
,
D. R. H.
,
Wang
,
Z.
, and
Ireland
,
P. T.
, 1995, “
Heating Element
,” British Patent No. PCT/GB96/2017.
18.
Moffat
,
R. J.
, 2004, “
hadiabatic and u′max
,”
ASME J. Electron. Packag.
1043-7398,
126
(
4
), pp.
501
509
.
19.
Schneider
,
P. J.
, 1955,
Conduction Heat Transfer
,
Addison-Wesley
,
Reading, MA
.
20.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
, 1978, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
AES-14
(
5
), pp.
738
749
.
21.
Oldfield
,
M. L. G.
, 2008, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021023
.
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
23.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
24.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
25.
Ochs
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2007, “
Investigation of the Influence of Trailing Edge Shock Waves on Film Cooling Performance of Gas Turbine Airfoils
,” ASME Paper No. GT-2007-27482.
You do not currently have access to this content.