This paper investigates heat transfer in a rotating disk system using preswirled cooling air from nozzles at high and low radius. The experiments were conducted over a range of rotational speeds, flow rates, and preswirl ratios. Narrow-band thermochromic liquid crystal (TLC) was specifically calibrated for application to experiments on a disk, rotating at 5000rpm and subsequently used to measure surface temperature in a transient experiment. The TLC was viewed through the transparent polycarbonate disk using a digital video camera and strobe light synchronized to the disk frequency. The convective heat transfer coefficient h was subsequently calculated from the one-dimensional solution of Fourier's conduction equation for a semi-infinite wall. The analysis was accounted for the exponential rise in the air temperature driving the heat transfer, and for the experimental uncertainties in the measured values of h. The experimental data was supported by “flow visualization,” determined from CFD. Two heat transfer regimes were revealed for the low-radius preswirl system: a viscous regime at relatively low coolant flow rates, and an inertial regime at higher flow rates. Both regimes featured regions of high heat transfer where thin, boundary layers replaced air exiting through receiver holes at high radius on the rotating disk. The heat transfer in the high-radius preswirl system was shown to be dominated by impingement under the flow conditions tested.

1.
Scricca
,
J. A.
, and
Moore
,
K. D.
, 1997, “
Effects of ‘Cooled’ Cooling Air on Pre-Swirl Nozzle Design
,” Technical Report No. NASA/CP-98-208527.
2.
El-Oun
,
Z. B.
, and
Owen
,
J. M.
, 1989, “
Preswirl Blade Cooling Effectiveness in an Adiabatic Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
522
529
.
3.
Chew
,
J. W.
,
Ciampoli
,
F.
,
Hills
,
N. J.
, and
Scanlon
,
T.
, 2005, “
Pre-Swirled Cooling Air Delivery System Performance
,” ASME Paper No. GT2005-68323.
4.
Farzaneh-Gord
,
M.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2005, “
Numerical and Theoretical Study of Flow and Heat Transfer in a Pre-Swirl Rotor-Stator System
,” ASME Paper No. GT2005-68135.
5.
Meierhofer
,
B.
, and
Franklin
,
C. J.
, 1981, “
An Investigation of a Preswirled Cooling Airflow to a Turbine Disc by Measuring the Air Temperature in Rotating Channels
,” ASME Paper No. 81-GT-132.
6.
Wilson
,
M.
,
Pilbrow
,
R.
, and
Owen
,
J. M.
, 1997, “
Flow and Heat Transfer in a Preswirl Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
364
373
.
7.
Geis
,
T.
,
Dittmann
,
M.
, and
Dullenkopf
,
K.
, 2004, “
Cooling Air Temperature Reduction in a Direct Transfer Preswirl System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
809
815
.
8.
Dittmann
,
M.
,
Dullenkopf
,
K.
, and
Wittig
,
S.
, 2004, “
Discharge Coefficients of Rotating Short Orifices With Radiused and Chamfered Inlets
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
803
808
.
9.
Yan
,
Y.
,
Farzaneh-Gord
,
M.
,
Lock
,
G. D.
,
Wilson
,
M.
, and
Owen
,
J. M.
, 2003, “
Fluid Dynamics of a Pre-Swirl Rotor-Stator System
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
641
647
.
10.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2007, “
Physical Interpretation of Flow and Heat Transfer in Preswirl Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
769
777
.
11.
Dittmann
,
M.
,
Geis
,
T.
,
Schramm
,
V.
,
Kim
,
S.
, and
Wittig
,
S.
, 2002, “
Discharge Coefficients of a Preswirl System in Secondary Air Systems
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
119
124
.
12.
Jarzombek
,
K.
,
Dohmen
,
H. J.
,
Benra
,
F. -K.
, and
Schneider
,
O.
, 2006, “
Flow Analysis in Gas Turbine Pre-Swirl Cooling Air Systems: Variation of Geometric Parameters
,” ASME Paper No. GT2006-90445.
13.
Lewis
,
P.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2008, “
Effect of Radial Location of Nozzles on Performance of Pre-Swirl Systems
,” ASME Paper GT2008-50295.
14.
Lock
,
G. D.
,
Yan
,
Y.
,
Newton
,
P. J.
,
Wilson
,
M.
, and
Owen
,
M. J.
, 2005, “
Heat Transfer Measurements Using Liquid Crystals in a Preswirl Rotating-Disk System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
375
382
.
15.
Owen
,
J. M.
, and
Rogers
,
R. H.
, 1995,
Flow and Heat Transfer in Rotating Disc Systems. Volume 2: Rotating Cavities
,
Research Studies Press
,
Taunton, UK
/Wiley, New York.
16.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
17.
Baughn
,
J. W.
, 1995, “
Liquid Crystal Methods for Studying Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
0142-727X,
16
, pp.
365
375
.
18.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 1: An Improved Technique
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
14
22
.
19.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2005, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
256
263
.
20.
Owen
,
J. M.
,
Newton
,
P. J.
, and
Lock
,
G. D.
, 2003, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal. Part 2: Experimental Uncertainties
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
23
28
.
21.
Fang
,
C. J.
,
Wu
,
M. C.
,
Kuo
,
Y. M.
,
Lee
,
C. Y.
,
Peng
,
C. H.
, and
Hung
,
Y. H.
, 2007, “
Heat Transfer Behavior for a Stationary or Rotating MCM Disk With an Unconfined Round Jet Impingement
,”
J. Electron. Packag.
1043-7398,
129
, pp.
400
410
.
You do not currently have access to this content.