Film-cooling effectiveness is measured on a rotating turbine blade platform for coolant injection through discrete holes using pressure sensitive paint technique. Most of the existing literatures provide information only for stationary endwalls. The effects of rotation on the platform film-cooling effectiveness are not well documented. Hence, the existing three-stage turbine research facility at the Turbomachinery and Flow Performance Laboratory, Texas A&M University was redesigned and installed to enable coolant gas injection on the first stage rotor platform. Two distinct coolant supply loops were incorporated into the rotor to facilitate separate feeds for upstream cooling using stator-rotor gap purge flow and downstream discrete-hole film cooling. As a continuation of the previously published work involving stator-rotor gap purge cooling, this study investigates film-cooling effectiveness on the first stage rotor platform due to coolant gas injection through nine discrete holes located downstream within the passage region. Film-cooling effectiveness is measured for turbine rotor frequencies of 2400 rpm, 2550 rpm, and 3000 rpm corresponding to rotation numbers of Ro=0.18, 0.19, and 0.23, respectively. For each of the turbine rotational frequencies, film-cooling effectiveness is determined for average film-hole blowing ratios of Mholes=0.5, 0.75, 1.0, 1.25, 1.5, and 2.0. To provide a complete picture of hub cooling under rotating conditions, simultaneous injection of coolant gas through upstream stator-rotor purge gap and downstream discrete film-hole is also studied. The combined tests are conducted for gap purge flow corresponding to coolant to mainstream mass flow ratio of MFR=1% with three downstream film-hole blowing ratios of Mholes=0.75, 1.0, and 1.25 for each of the three turbine speeds. The results for combined upstream stator-rotor gap purge flow and downstream discrete holes provide information about the optimum purge flow coolant mass, average coolant hole blowing ratios for each rotational speed, and coolant injection location along the passage to obtain efficient platform film cooling.

1.
Schobeiri
,
M. T.
, 1999, “
Efficiency, Performance and Flow Measurement of Siemens-Westinghouse HP-Turbine Blades
,” Series 9600 and 5600, Westinghouse Final Report.
2.
Schobeiri
,
M. T.
,
Gilarranz
,
J. L.
, and
Johansen
,
E. S.
, 2000, “
Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine With 3-D Blades, Design Points and Off-Design Experimental Investigations
,” ASME Paper No. 2000-GT-484.
3.
Schobeiri
,
M. T.
,
Suryanarayanan
,
A.
,
Jermann
,
C.
, and
Neuenschwander
,
T.
, 2004, “
A Comparative Aerodynamic and Performance Study of a Three-Stage High Pressure Turbine With 3-D Bowed Blades and Cylindrical Blades
,” ASME Paper No. GT-2004-53650.
4.
Lakshminarayana
,
B.
, 1996,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
.
5.
Schobeiri
,
M.
, 2005,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer-Verlag
,
New York
.
6.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
7.
Langston
,
L. S.
, 1980, “
Crossflow in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
8.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
9.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
, 1990, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
488
496
.
10.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
248
257
.
11.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
, 1953, “
A Visualisation Study of Secondary Flows in Cascades
,” NACA Report No. 1163.
12.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. G.
, 1995, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,” ASME Paper No. 95-GT-7.
13.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
14.
Simon
,
T. W.
, and
Piggush
,
J. D.
, 2006, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J.
0001-1452,
22
(
2
), pp.
301
312
.
15.
Bogard
,
D. G.
, and
Thole
,
K. A.
, 2006, “
Gas Turbine Film Cooling
,”
AIAA J.
0001-1452,
22
(
2
), pp.
249
270
.
16.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
17.
Harasgama
,
S. P.
, and
Burton
,
C. D.
, 1992, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 1—Experimental Technique and Results
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
734
740
.
18.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
19.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1997, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
786
793
.
20.
Chyu
,
M. K.
, 2001, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
27
36
.
21.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
738
.
22.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part 1—Aerodynamic Measurements
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
709
719
.
23.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part 2—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
720
728
.
24.
Kost
,
F.
, and
Mullaert
,
A.
, 2006, “
Migration of Film-Coolant From Slot and Hole Ejection at a Turbine Vane Endwall
,” ASME Paper No. GT2006-90355.
25.
Oke
,
R. A.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Wahlberg
,
R.
, 2000, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,” ASME Paper No. 2000-GT-214.
26.
Oke
,
R. A.
,
Simon
,
T. W.
,
Shih
,
T.
,
Zhu
,
B.
,
Ling
,
Y. L.
, and
Chyu
,
M.
, 2001, “
Measurements Over a Film-Cooled Contoured Endwall With Various Injection Rates
,” ASME Paper No. 2001-GT-140.
27.
Oke
,
R. A.
, and
Simon
,
T. W.
, 2002, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,” ASME Paper No. GT-2002-30169.
28.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. GT-2004-53326.
29.
Zhang
,
L.
, and
Moon
,
H. K.
, 2003, “
Turbine Nozzle Endwall Inlet Film Cooling—The Effect of a Back-Facing Step
,” ASME Paper No. GT-2003-38319.
30.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,” ASME Paper No. GT-2005-68340.
31.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2005, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,” ASME Paper No. GT-2005-68900.
32.
Hada
,
S.
, and
Thole
,
K. A.
, “
Computational Study of a Mid Passage Gap and Upstream Slot on Vane Endwall Film Cooling
,” ASME Paper No. GT-2006-91067.
33.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2006, “
Endwall Film Cooling Through Fan-Shaped Holes With Different Area Ratios
,” ASME Paper No. GT-2006-90684.
34.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Hoslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
35.
Takeishi
,
M.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
, 1992, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
828
834
.
36.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
63
70
.
37.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
13
.
38.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2004, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade
,” ASME Paper No. IMECE 2004-59852.
39.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2005, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint
,” ASME Paper No. GT-2005-68344.
40.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,” ASME Paper No. HT-2005-72363.
41.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,” ASME Paper No. IMECE-2005-80146.
42.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
, 2006, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Hole Flows
,” ASME Paper No. GT-2006-90375.
43.
Ahn
,
J.
,
Mhetras
,
S. P.
, and
Han
,
J. C.
, 2004, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,” ASME Paper No. GT-2004-53249.
44.
Mhetras
,
S. M.
,
Yang
,
H.
,
Gao
,
Z.
, and
Han
,
J. C.
, 2005, “
Film Cooling Effectiveness on Squealer Rim Walls and Squealer Cavity Floor of a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,” ASME Paper No. GT-2005-68387.
45.
Suryanarayanan
,
A.
,
Mhetras
,
S.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, “
Film Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,” ASME Paper No. GT-2006-90034.
46.
Schobeiri
,
M. T.
, 1989, “
Optimum Trailing Edge Ejection for Cooled Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
111
(
4
), pp.
510
514
.
47.
Schobeiri
,
M. T.
, and
Pappu
,
K.
, 1999, “
Optimization of Trailing Edge Ejection Mixing Losses Downstream of Cooled Turbine Blades: A Theoretical and Experimental Study
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
118
125
.
48.
McLachlan
,
B.
, and
Bell
,
J.
, 1995, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
470
485
.
49.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
50.
Holman
,
J. P.
, 2000,
Experimental Methods for Engineers
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.