Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consistent with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparisons are presented with published experimental data. Some of the data are for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach taken in this analysis is to treat the roughness in a statistical sense, consistent with what would be obtained from blades measured after exposure to actual engine environments. An approach is given to determine the equivalent sand grain roughness from the statistics of the regular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test conditions. Additional comparisons are made with experimental heat transfer data, where the roughness geometries are both regular and statistical. Using the developed analysis, heat transfer calculations are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

1.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A. W.
, 1990, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” VKI Technical Note 174.
2.
Arts
,
T.
, 1995, “
Thermal Investigation of a Highly Loaded Transonic Turbine Film Cooled Guide Vane
,”
First European Conference on Turbomachinery—Fluid Dynamic and Thermodynamic Aspects
, Erlanger, Germany, VKI Preprint No. 1995-11.
3.
Hourmouziadis
,
J.
, 1989, “
Aerodynamic Design of Low Pressure Turbines
,” AGARD Lecture Series No. 167.
4.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
, 1998, “
Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
20
27
.
5.
Boynton
,
J. L.
,
Tabibzadeh
,
R.
, and
Hudson
,
S. T.
, 1993, “
Investigation of Rotor Blade Roughness Effects on Turbine Performance
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
614
620
.
6.
Bammert
,
K.
, and
Stanstede
,
H.
, 1972, “
“Measurements Concerning the Influence of Surface Roughness and Profile Changes on the Performance of Gas Turbines
,”
ASME J. Eng. Power
,
94
, pp.
207
213
. 0022-0825
7.
Bammert
,
K.
, and
Stanstede
,
H.
, 1976, “
“Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines
,”
ASME J. Eng. Power
,
98
, pp.
29
36
. 0022-0825
8.
Harbecke
,
U. G.
,
Riess
,
W.
and
Seume
,
J. R.
, 2002, “
The Effect of Milling Process Induced Coarse Surface Texture on Aerodynamic Turbine Profile Losses
,” ASME Paper No. GT-2002-3033.
9.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 1998, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
522
529
.
10.
Stabe
,
R. G.
, and
Liebert
,
C. H.
, 1975, “
Aerodynamic Performance of a Ceramic-Coated Core Turbine Vane Tested With Cold Air in a Two-Dimensional Cascade
,”
NASA
Report No. TMX-3191.
11.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
, 2003, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,” ASME Paper No. GT-2003-38580.
12.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
, 1985, “
Predictions of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach
,”
ASME J. Fluids Eng.
,
107
, pp.
251
257
. 0098-2202
13.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
, 1991, “
Measurements and Calculations of Rough Wall Heat Transfer in the Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
1067
1082
.
14.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2008, “
Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021003
.
15.
McClain
,
S. T.
, 2002, “
A Discrete Element Method for Turbulent Flows Over Randomly Rough Surfaces
,” Ph.D. thesis, Mississippi State University, Mississippi State, MS.
16.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2003, “
Predicting Skin Friction and Heat Transfer for Turbulent Flow Over Real Gas Turbine Surface Roughness Using the Discrete Element Method
,” ASME Paper No. GT2003-38813.
17.
Sigal
,
A.
, and
Danberg
,
J. E.
, 1990, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
28
(
3
), pp.
554
556
.
18.
Dvorak
,
F. A.
, 1969, “
Calculation of Turbulent Boundary Layers on Rough Surfaces in Pressure Gradient
,”
AIAA J.
0001-1452,
7
(
9
), pp.
1752
1759
.
19.
Simpson
,
R. L.
, 1973, “
A Generalized Correlation of Roughness Density Effects in the Turbulent Boundary Layer
,”
AIAA J.
,
11
(
2
), pp.
242
244
. 0001-1452
20.
Dirling
,
R. B.
, 1973, “
A Method for Computing Roughwall Heat Transfer Rates on Re-Entry Nosetips
,” AIAA Paper No. 73-763.
21.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
, 2002, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
671
677
.
22.
Waigh
,
D. R.
, and
Kind
,
R. J.
, 1998, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
0001-1452,
36
(
6
), pp.
1117
1119
.
23.
Koch
,
C. C.
, and
Smith
,
L. H.
, 1976, “
“Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
,
98
, pp.
411
424
. 0022-0825
24.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2005, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
200
208
.
25.
Taylor
,
R. P.
, 1990, “
Surface Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
175
180
.
26.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
River
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
739
748
.
27.
Tarada
,
F.
, and
Suzuki
,
M.
, 1993, “
External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness
,” ASME Paper No. 93-GT-74.
28.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
, 1998, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
337
342
.
29.
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2004, “
“Mach Number/Surface Roughness Effects on Symmetric Transonic Turbine Airfoil Aerodynamic Losses
,”
J. Propul. Power
0748-4658,
20
(
6
), pp.
1117
1125
.
30.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
31.
Steelant
,
J.
and
Dick
,
E.
, 1999 “
Prediction of By-Pass Transition by Means of a Turbulence Weighting Factor—Part I: Theory and Validation
,” ASME Paper No. 99-GT-29.
32.
Boyle
,
R. J.
, and
Simon
,
F. F.
, 1999, “
Mach Number Effects on Turbine Blade Transition Length Prediction
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
694
702
.
33.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
, 1996, “
Transition Length Prediction For Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
744
751
.
34.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. F.
, 1983, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,”
NASA
Report No. CR-168015.
35.
Arts
,
T.
,
Duboue
,
J. -M.
, and
Rollin
,
G.
, 1997, “
Aero-Thermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade
,” ASME Paper No. 97-GT-120.
36.
Chima
,
R. V.
, 1987, “
“Explicit Multigrid Algorithm for Quasi-Three-Dimensional Flows in Turbomachinery
,”
J. Propul. Power
0748-4658,
3
(
5
), pp.
397
405
.
37.
Chima
,
R. V.
,
Giel
,
P. W.
, and
Boyle
,
R. J.
, 1993, “
An Algebraic Turbulence Model for Three-Dimensional Viscous Flows
,” AIAA Paper 93-0083.
38.
Cebeci
,
T.
, and
Chang
,
K. C.
, 1978, “
Calculation of Incompressible Rough-Wall Boundary Layer Flows
,”
AIAA J.
,
16
(
7
), pp.
730
735
. 0001-1452
39.
Ames
,
F. E.
,
Wang
,
C.
, and
Barbot
,
P. A.
, 2003, “
Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
221
231
.
40.
Boyle
,
R. J.
,
Giel
,
P. W.
, and
Ames
,
F. E.
, 2004, “
Predictions for the Effects of Freestream Turbulence on Turbine Blade Heat Transfer
,” ASME Paper No. GT2004-54332.
41.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
, 1994, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
392
404
.
42.
Gostelow
,
J. P.
, and
Walker
,
G. J.
, 1991, “
Similarity Behavior in Transitional Boundary Layers Over a Range of Adverse Pressure Gradients and Turbulence Levels
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
617
625
.
43.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
13
.
44.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
, 2005, “
Effects of Surface Roughness on Turbine Vane Heat Transfer
,” ASME Paper No. GT2005-69133.
45.
Stripf
,
M.
, 2007, “
Einfluss der Oberflächenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln
,”
Forschungsberichte aus dem Institut für Thermische Strömungsmaschinen
, Vol.
38
,
Logos
,
Berlin
.
You do not currently have access to this content.