The gas turbine blade/vane internal cooling is achieved by circulating compressed air through the cooling channels inside the turbine blade. Cooling channel geometries vary to fit the blade profile. This paper experimentally investigated the rotational effects on heat transfer in an equilateral triangular channel (Dh=1.83cm). The triangular shaped channel is applicable to the leading edge of the gas turbine blade. Angled 45 deg ribs are placed on the leading and trailing surfaces of the test section to enhance heat transfer. The rib pitch-to-rib height ratio (P/e) is 8 and the rib height-to-channel hydraulic diameter ratio (e/Dh) is 0.087. Effect of the angled ribs under high rotation numbers and buoyancy parameters is also presented. Results show that due to the radially outward flow, heat transfer is enhanced with rotation on the trailing surface. By varying the Reynolds numbers (10,000–40,000) and the rotational speeds (0–400 rpm), the rotation number and buoyancy parameter reached in this study are 0–0.58 and 0–1.9, respectively. The higher rotation number and buoyancy parameter correlate very well and can be used to predict the rotational heat transfer in the equilateral triangular channel.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Han
,
J. C.
, 1984, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
774
781
.
3.
Han
,
J. C.
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
321
328
.
4.
Han
,
J. C.
, and
Zhang
,
P.
, 1991, “
Effect of Rib-Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
123
130
.
5.
Taslim
,
M. E.
, and
Lengkong
,
A.
, 1998, “
45 deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
571
580
.
6.
Taslim
,
M. E.
, and
Spring
,
S. D.
, 1994, “
Effects of Turbulator Profile and Spacing on Heat Transfer and Friction in a Channel
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
555
562
.
7.
Liu
,
Y. H.
,
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
, 2007, “
Rib Spacing Effect on Heat Transfer in Rotating Two-Pass Ribbed Channel (AR=1:2)
,”
J. Thermophys. Heat Transfer
0887-8722,
21
(
3
), pp.
582
595
.
8.
Metzger
,
D. E.
, and
Vedula
,
R. P.
, 1987, “
Heat Transfer in Triangular Channels With Angled Roughness Ribs on Two Walls
,”
Exp. Heat Transfer
0891-6152,
1
, pp.
31
44
.
9.
Ahn
,
S. W.
, and
Son
,
K. P.
, 2002, “
Heat Transfer and Pressure Drop in the Roughened Equilateral Triangular Duct
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
, pp.
479
488
.
10.
Haasenritter
,
A.
, and
Weigand
,
B.
, 2001, “
Heat Transfer in Triangular Rib-Roughened Channels
,” ASME Paper No. NHTC 2001-20245.
11.
Lee
,
D. H.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2006, “
Heat Transfer Measurements in a Rotating Equilateral Triangular Channel With Various Rib Arrangements
,” ASME Paper No. GT 2006-90973.
12.
Dutta
,
S.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1995, “
Experimental Heat Transfer in a Rotating Triangular Duct: Effect of Model Orientation
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
1058
1061
.
13.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
, 1994, “
Augmented Heat Transfer in Triangular Ducts With Full and Partial Ribbed Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
574
579
.
14.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
, pp.
311
349
.
15.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
, 2005, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR=4:1) With Angled Ribs
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
378
387
.
16.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Chopra
,
S.
, 2007, “
Heat Transfer in a Two-Pass Rectangular Channel (AR=1:4) Under High Rotation Numbers
,” ASME Paper No. GT 2007-27067.
17.
Wright
,
L. M.
,
Liu
,
Y. H.
,
Han
,
J. -C.
, and
Chopra
,
S.
, 2007, “
Heat Transfer in a Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,” ASME Paper No. GT 2007-27093.
18.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1991, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
42
51
.
19.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
, 1991, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
321
330
.
20.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
113
123
.
21.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45-Degree Ribbed Walls
,” ASME Paper No. GT 2005-68493.
22.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
, 2004, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,” ASME Paper No. GT 2004-53501.
23.
Liou
,
T. M.
,
Chang
,
S. W.
,
Hung
,
J. H.
, and
Chiou
,
S. F.
, 2007, “
High Rotation Number Heat Transfer of 45° Rib-Roughened Rectangular Duct With Two Channel Orientations
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4063
4078
. 0017-9310
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
. 0025-6501
You do not currently have access to this content.