This paper describes the experimental approach utilized to perform experiments using a fully cooled rotating turbine stage to obtain film effectiveness measurements. Significant changes to the previous experimental apparatus were implemented to meet the experimental objectives. The modifications include the development of a synchronized blowdown facility to provide cooling gas to the turbine stage, installation of a heat exchanger capable of generating a uniform or patterned inlet temperature profile, novel utilization of temperature and pressure instrumentation, and development of robust double-sided heat flux gauges. With these modifications, time-averaged and time-accurate measurements of temperature, pressure, surface heat flux, and film effectiveness can be made over a wide range of operational parameters, duplicating the nondimensional parameters necessary to simulate engine conditions. Data from low Reynolds number experiments are presented to demonstrate that all appropriate scaling parameters can be satisfied and that the new components have operated correctly. Along with airfoil surface heat transfer and pressure data, temperature and pressure data from inside the coolant plenums of the vane and rotating blade airfoils are presented. Pressure measurements obtained inside the vane and blade plenum chambers illustrate passing of the wakes and shocks as a result of vane/blade interaction. Part II of this paper (Haldeman, C. W., Mathison, R. M., Dunn, M. G., Southworth, S. A., Harral, J. W., and Heltland, G., 2008, ASME J. Turbomach., 130(2), p. 021016) presents data from the low Reynolds number cooling experiments and compares these measurements to CFD predictions generated using the Numeca FINE/Turbo package at multiple spans on the vanes and blades.

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
, London.
2.
Haldeman
,
C. W.
,
Krumanaker
,
M.
, and
Dunn
,
M. G.
, 2003, “
Influence of Clocking and Vane/Blade Spacing on the Unsteady Surface Pressure Loading for a Modern Stage and One-Half Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
743
753
.
3.
Clark
,
J. P.
,
Stetson
,
G. M.
,
Magge
,
S. S.
,
Ni
,
R. H.
,
Haldeman
,
C. W.
, Jr.
, and
Dunn
,
M. G.
, 2000, “
The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and 1/2 Stage Transonic Turbine and a Comparison With Experimental Results
,” ASME Paper No. 2000-GT-0446.
4.
Clark
,
J. P.
,
Aggarwala
,
A. S.
,
Velonis
,
M. A.
,
Gacek
,
R. E.
,
Magge
,
S. S.
, and
Price
,
F. R.
, 2002, “
Using CFD to Reduce Resonant Stresses on a Single-Stage, High-Pressure Turbine Blade
,” ASME Paper No. 2002-GT-30320.
5.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S. A.
,
Harral
,
J. W.
, and
Heltland
,
G.
, 2008, “
Aerodynamic and Heat Flux Measurements in a Single-Stage Fully Cooled Turbine—Part II: Experimental Results
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021016
.
6.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
, 1991, “
Film Cooling on a Gas Turbine Rotor Blade
,” ASME Paper No. 91-GT-279.
7.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Joslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
8.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1992, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,” ASME Paper No. 92-GT-201.
9.
Kercher
,
D. M.
, 1998, “
A Film-Cooling CFD Bibliography: 1971–1996
,”
Int. J. Rotating Mach.
1023-621X,
4
(
1
), pp.
66
72
.
10.
Kercher
,
D. M.
, 2000, “
Turbine Airfoil Leading Edge Film Cooling Bibliography
,”
Int. J. Rotating Mach.
1023-621X,
6
(
5
), pp.
313
319
.
11.
Elovic
,
E.
, and
Koffel
,
W. K.
, 1983, “
Some Considerations in the Thermal Design of Turbine Airfoil Cooling Systems
,”
Int. J. Turbo Jet Engines
0334-0082,
1
, pp.
45
66
.
12.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
, 1984, “
Measurement and Analysis of Heat Flux in a Turbine Stage—Part II: Discussion of Results and Comparison With Prediction
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
234
240
.
13.
Hildritch
,
M. A.
, and
Ainsworth
,
R. W.
, 1990, “
Unsteady Heat Transfer Measurements on a Rotating Gas Turbine Blade
,” ASME Paper No. 90-GT-175.
14.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Hanes
,
R.
, and
Norton
,
R. J. G.
, 1989, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
1
7
.
15.
Denos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
, 2000, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,” ASME Paper No. 2000-GT-435.
16.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
MacArthur
,
C. D.
, and
Murawski
,
C. G.
, 1992, “
The USAF Advanced Turbine Aerothermal Research Rig (ATARR)
,”
Heat Transfer and Cooling in Gas Turbines
(AGARD Conference Proceedings
527
), AGARD, Neuilly Sur Seine, Franace, pp.
20
-1–20-
14
.
17.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1992, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,” ASME Paper No. 92-GT-201.
18.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
, 1985, “
High Frequency Response Heat Flux Gauge
,”
Rev. Sci. Instrum.
0034-6748,
57
(
4
), pp.
639
649
.
19.
Haldeman
,
C.
, 1989, “
An Experimental Study of Radial Temperature Profile Effects on Turbine Tip Shroud Heat-Transfer
,” Aeronautical and Astronautical Engineering Dept., MIT, Cambridge, MA.
20.
Shang
,
T.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Saxer
,
A. P.
, 1995, “
The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine
,” AIAA Joint Propulsion Conference, San Diego, CA.
21.
Shang
,
T.
, and
Epstein
,
A. H.
, 1997, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
0889-504X,
119
(
July
), pp.
544
553
.
22.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
, 1970, “
Intra-Stator Transport of Rotor Wakes and its Effect on Compressor Performance
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
359
368
.
23.
Lakshminarayana
,
B.
, 1975, “
Effects of Inlet Temperature Gradients on Turbomachinery Performance
,”
ASME J. Eng. Power
0022-0825,
97
, pp.
64
74
.
24.
Haldeman
,
C. W.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
, 2004, “
Design, Construction, and Operation of a Combustor Emulator for Short-Duration High-Pressure Turbine Experiments
,” AIAA Joint Propulsion Conference, Fort Lauderdale, Paper No. AIAA-2004-3829.
25.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2004, “
Developing a Combustor Simulator for Investigating High Pressure Turbine Aerodynamics and Heat Transfer
,” presented at ASME Turbo Expo, Vienna.
26.
Chana
,
K. S.
,
Hurrion
,
J. R.
, and
Jones
,
T. V.
, 2003, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,” ASME Paper No. GT2003-38469.
27.
Miller
,
K. L.
, and
Crawford
,
M. E.
, 1984, “
Numerical Simulation of Single, Double and Multiple Row Film Cooling Effectiveness and Heat-Transfer
,” ASME Paper No. 84-GT-112.
28.
Tafti
,
D. K.
, and
Yavuzkurt
,
S.
, 1987, “
Prediction of Heat Transfer Characteristics for Discrete Hole Film Cooling for Turbine Blade Applications
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
504
511
.
29.
Neelakantan
,
S.
, and
Crawford
,
M. E.
, 1995, “
Prediction of Film Cooling Effectiveness and Heat Transfer Due to Streamwise and Compound Angle Injection on Flat Surfaces
,” ASME Paper No. 95-GT-151.
30.
Neelakantan
,
S.
, and
Crawford
,
M. E.
, 1996. “
Prediction of Effectiveness and Heat Transfer Using a New 2-D Injection and Dispersion Model of the Film Cooling Process
,” ASME Paper No. 96-GT-224.
31.
Weigland
,
B.
,
Bonhoff
,
B.
, and
Ferguson
,
J. R.
, 1997, “
A Comparative Study Between 2D Boundary Layer Predictions and 3D Navier-Stokes Calculations for a Film Cooled Vane
,” presented at ASME National Heat Transfer Conference.
32.
Leylek
,
J. H.
, and
Zerkel
,
R. D.
, 1994, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
358
368
.
33.
Abhari
,
R. S.
, 1996, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
123
133
.
34.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2005, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,” ASME Paper No. GT2005-68783.
35.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
, 2005, “
Modeling of Film Cooling—Part II: Model for Use in 3D CFD
,” ASME Paper No. GT2005-68780.
36.
Camci
,
C.
, 1989, “
An Experimental And Numerical Investigation of Near Cooling Hole Heat Fluxes on a Film Cooled Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
63
70
.
37.
Murphy
,
J. S.
, 2004, “
Control of the “Heat-Island” Effect on the Measurement of Pyrex Thin-Film Button Gauges Through Gauge Design
,” M.S. thesis, Mechanical Engineering Department, Ohio State University.
38.
Eaton
,
J.
, 2000–2004, private communication about turbulence grid.
39.
Dunn
,
M. G.
, 1986, “
Heat-Flux Measurements for the Rotor of a Full-Stage Turbine—Part 1: Time-Averaged Results
,”
ASME J. Turbomach.
0889-504X,
108
, pp.
90
97
.
40.
Dunn
,
M. G.
,
Martin
,
H. L.
, and
Stanek
,
M. J.
, 1986, “
Heat Flux and Pressure Measurements and Comparison With Prediction for a Low Aspect Ratio Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
108
(
1
),
108
115
.
41.
Dunn
,
M. G.
,
Moller
,
J. C.
, and
Steel
,
R. C.
, 1989, “
Operating Point Verification for a Large Shock Tunnel Test Facility
,” WRDC-TR-2027, May.
42.
Haldeman
,
C. W.
, 2003, “
An Experimental Investigation of Clocking Effects on Turbine Aerodynamics Using a Modern 3-D One and One-Half Stage High Pressure Turbine for Code Verification and Flow Model Development
,” Ph.D. thesis, Aeronautical and Astronautical Engineering Department, Ohio State University.
43.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
, 2004, “
Aerodynamic and Heat-flux Measurements With Predictions on a Modern One and 1/2 Stage High Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
522
531
.
You do not currently have access to this content.