With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.

1.
Wenglarz
,
R. A.
, 1985, “
Deposition, Erosion, and Corrosion Protection for Coal-Fired Gas Turbines
,” ASME Paper No. 85-IGT-61.
2.
Wenglarz
,
R. A.
,
Nirmalan
,
N. V.
, and
Daehler
,
T. G.
, 1995, “
Rugged ATS Turbines for Alternate Fuels
,” ASME No. 95-GT-73.
3.
Decorso
,
S. M.
,
Newby
,
R. A.
,
Anson
,
D.
,
Wenglarz
,
R. A.
, and
Wright
,
I. G.
, 1996, “
Coal∕Biomass Fuels and the Gas Turbine: Utilization of Solid Fuels and Their Derivatives
,” ASME No. 96-GT-76.
4.
Moses
,
C. A.
, and
Bernstein
,
H. L.
, 1996, “
Fuel-Specification Considerations for Biomass Pyrolysis Liquids to be Used in Stationary Gas Turbines
,” ASME No. 96-GT-406.
5.
Wenglarz
,
R. A.
, 1992, “
An Approach for Evaluation of Gas Turbine Deposition
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
, pp.
230
234
.
6.
Bons
,
J. P.
,
Corsby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
, 2005, “
High Pressure Turbine Deposition in Land Based Gas Turbines From Various Synfuels
,” ASME No. GT2005-68479.
7.
Bornstein
,
N. S.
, 1996, “
Reviewing Sulfidation Corrosion—Yesterday and Today
,”
JOM
1047-4838,
48
(
11
), pp.
37
39
.
8.
Wright
,
I. G.
,
Leyens
,
C.
, and
Pint
,
B. A.
, 2000, “
An Analysis of the Potential for Deposition, Erosion, or Corrosion in Gas Turbines Fueled by the Products of Biomass Gasification or Combustion
,” ASME No. 2000-GT-0019.
9.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
J. Turbomach.
0889-504X,
123
, pp.
739
748
.
10.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
J. Turbomach.
0889-504X,
112
, pp.
175
180
.
11.
Tarada
,
F.
, and
Suzuki
,
M.
, 1993, “
External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness
,” ASME No. 93-GT-74.
12.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Chiang
,
H. D.
, 1985, “
Effect of Surface Roughness on Film Cooling Performance
,”
J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
111
116
.
13.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Effects of Surface Roughness on Film Cooling
,” ASME No. 96-GT-299.
14.
Barlow
,
D. N.
, and
Kim
,
Y. W.
, 1995, “
Effect of Surface Roughness on Local Heat Transfer and Film Cooling Effectiveness
,” ASME No. 95-GT-14.
15.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2005, “
Effects of Mid Passage Gap, Endwall Misalignment, and Roughness on Endwall Film Cooling
,”
J. Turbomach.
0889-504X,
128
, pp.
62
70
.
16.
Bunker
,
R. S.
, 2000, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,” ASME No. 2000-GT-0244.
17.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
, 1998, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
J. Turbomach.
0889-504X,
120
, pp.
337
342
.
18.
Ekkad
,
S.
, and
Han
,
J. C.
, 1997, “
Detailed Heat Transfer Distributions on a Cylindrical Model With Simulated TBC Spallation
,” AIAA Paper No. 97-0595.
19.
Ekkad
,
S. V.
, and
Han
,
J. C.
, 2000, “
Film Cooling Measurements on Cylindrical Models With Simulated Thermal Barrier Coating Spallation
,”
J. Thermophys. Heat Transfer
0887-8722,
14
(
2
), pp.
194
200
.
20.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
, 2002, “
Combustor-Turbine Interface Studies: Part 1: Endwall Measurements
,”
J. Turbomach.
0889-504X,
125
, pp.
193
202
.
21.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
, 2002, “
Combustor-Turbine Interface Studies: Part 2: Flow and Thermal Field Measurements
,”
J. Turbomach.
0889-504X,
125
, pp.
203
209
.
22.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film Cooling for a First Stage Vane
,”
J. Turbomach.
0889-504X,
127
, pp.
297
305
.
23.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2003, “
Computational Predictions of Endwall Film Cooling for a First Stage Vane
,” ASME No. GT2003-38252.
24.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2000, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
J. Turbomach.
0889-504X,
123
, pp.
231
237
.
25.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
You do not currently have access to this content.