Limited available data suggest a substantial impact of Mach number on the heat transfer from an array of jets impinging on a surface at fixed Reynolds number. Many jet array heat transfer correlations currently in use are based on tests in which the jet Reynolds number was varied by varying the jet Mach number. Hence, this data may be inaccurate for high Mach numbers. Results from the present study are new and innovative because they separate the effects of jet Reynolds number and jet Mach number for the purposes of validating and improving correlations that are currently in use. The present study provides new data on the separate effects of Reynolds number and Mach number for an array of impinging jets in the form of discharge coefficients, local and spatially averaged Nusselt numbers, and local and spatially averaged recovery factors. The data are unique because data are given for impingement jet Mach numbers as high as 0.60 and impingement jet Reynolds numbers as high as 60,000, and because the effects of Reynolds number and Mach number are separated by providing data at constant Reynolds number because the Mach number is varied, and data at constant Mach number because the Reynolds number is varied. As such, the present data are given for experimental conditions not previously examined, which are outside the range of applicability of current correlations.

1.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,” Advances in Heat Transfer,
Academic Press
, New York, Vol.
13
, pp.
1
60
.
2.
Schulz
,
A.
, 2001, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
135
146
.
3.
Kercher
,
D. M.
, and
Tabakoff
,
W.
, 1970, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
73
82
.
4.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C.
, 1971, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Power
0022-0825,
91
, pp.
149
158
.
5.
Chupp
,
R.
,
Helms
,
H.
,
McFadden
,
P.
, and
Brown
,
T.
, 1969, “
Evaluation of Internal Heat-Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
J. Aircr.
0021-8669,
6
(
3
), pp.
203
208
.
6.
Metzger
,
D. E.
, and
Korstad
,
R.
, 1972, “
Effects of Crossflow on Impingement Heat Transfer
,”
ASME J. Eng. Power
0022-0825,
94
, pp.
35
41
.
7.
Chance
,
J. L.
, 1974, “
Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets
,”
Tappi J.
0734-1415,
57
(
6
), pp.
108
112
.
8.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
, 1979, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
526
531
.
9.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
, 1981, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
337
342
.
10.
Obot
,
N. T.
, and
Trabold
,
T. A.
, 1987, “
Impingement Heat Transfer Within Arrays of Circular Jets—Part 1: Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacings
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
872
879
.
11.
Bunker
,
R.
, and
Metzger
,
D. E.
, 1990, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part I: Impingement Cooling Without Film Extraction
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
451
458
.
12.
Fox
,
M. D.
,
Kurosaka
,
M.
,
Hedges
,
L.
, and
Hirano
,
K.
, 1993, “
The Influence of Vortical Structures on the Thermal Fields of Jets
,”
J. Fluid Mech.
0022-1120,
255
, pp.
447
472
.
13.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2002, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,” ASME Paper No. GT-2002-30473.
14.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Bakhtari
,
K.
, 2002, “
Experimental Racetrack Shaped Jet Impingement on a Roughened Leading-Edge Wall With Film Holes
,” ASME Paper No. GT-2002-30477.
15.
Li
,
X.
,
Gaddis
,
J. L.
, and
Wang
,
T.
, 2002, “
Mist/Stream Heat Transfer With Jet Impingement Onto a Concave Surface
,” ASME Paper No. GT-2002-30475.
16.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1996, “
Rotation Effect on Jet-Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Radial Crossflow
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
79
85
.
17.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 2003, “
Rotation Effect on Jet-Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Coolant Extraction
,” ASME Paper No. GT-2003-38905.
18.
Parsons
,
J. A.
, and
Han
,
J. C.
, 2001, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Coolant Extraction
,”
Int. J. Rotating Mach.
1023-621X,
7
, pp.
87
103
.
19.
Epstein
,
A. H.
,
Kerrebrock
,
J. L.
,
Koo
,
J. J.
, and
Preiser
,
U. Z.
, 1985, “
Rotational Effects on Impingement Cooling
,” Symposium on Transport Phenomena in Rotating Machinery, Honolulu.
20.
Mattern
,
C.
, and
Hennecke
,
D. K.
, 1996, “
Influence of Rotation on Impingement Cooling
,” ASME Paper No. GT-1996-161.
21.
Brevet
,
P.
,
Dejeu
,
C.
,
Dorignac
,
E.
,
Jolly
,
M.
, and
Vullierme
,
J. J.
, 2002, “
Heat Transfer to a Row of Impinging Jets in Consideration of Optimization
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4191
4200
.
22.
Brevet
,
P.
,
Dorignac
,
E.
, and
Vullierme
,
J. J.
, 2001, “
Mach Number Effect on Jet Impingement Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
409
416
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
24.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.