The unsteady pressure over the suction surface of a modern low-pressure (LP) turbine blade subjected to periodically passing wakes from a moving bar wake generator is described. The results presented are a part of detailed large-eddy simulation (LES) following earlier experiments over the T106 profile for a Reynolds number of 1.6×105 (based on the chord and exit velocity) and the cascade pitch to chord ratio of 0.8. The present LES uses coupled simulations of cylinder for wake, providing four-dimensional inflow conditions for successor simulations of wake interactions with the blade. The three-dimensional, time-dependent, incompressible Navier-Stokes equations in fully covariant form are solved with 2.4×106 grid points for the cascade and 3.05×106 grid points for the cylinder using a symmetry-preserving finite difference scheme of second-order spatial and temporal accuracy. A separation bubble on the suction surface of the blade was found to form under the steady state condition. Pressure fluctuations of large amplitude appear on the suction surface as the wake passes over the separation region. Enhanced receptivity of perturbations associated with the inflexional velocity profile is the cause of instability and coherent vortices appear over the rear half of the suction surface by the rollup of shear layer via Kelvin-Helmholtz (KH) mechanism. Once these vortices are formed, the steady-flow separation changes remarkably. These coherent structures embedded in the boundary layer amplify before breakdown while traveling downstream with a convective speed of about 37% of the local free-stream speed. The vortices play an important role in the generation of turbulence and thus to decide the transitional length, which becomes time dependent. The source of the pressure fluctuations on the rear part of the suction surface is also identified as the formation of these coherent structures. When compared with experiments, it reveals that LES is worth pursuing as an understanding of the eddy motions and interactions is of vital importance for the problem.

1.
Mayle
,
R. E.
, 1991, “
The Role of Laminar Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
2.
Liu
,
X.
, and
Rodi
,
W.
, 1992, “
Measurement of Unsteady Flow and Heat Transfer in a Linear Turbine Cascade
,” ASME Paper No. 92-GT-323.
3.
Walker
,
G. J.
, 1993, “
The Role of Laminar Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
207
217
.
4.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development—Part 1: Composite Picture; Part 2: Compressors; Part 3: LP Turbines; Part 4: Computational Analysis
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
114
138
.
5.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1998, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbine
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
28
35
.
6.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. R. C.
, and
Durbin
,
P. A.
, 1999, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
0022-1120,
398
, pp.
109
153
.
7.
Horton
,
H. P.
, 1969, “
A Semi-Empirical Theory for the Growth and Bursting of Laminar Separation Bubbles
,” ARC CP 1073.
8.
Roberts
,
W. B.
, 1980, “
Calculation of Laminar Separation Bubbles and Their Effect of Airfoil Performance
,”
AIAA J.
0001-1452,
18
, pp.
25
31
.
9.
Tani
,
I.
, 1964, “
Low Speed Flows Involving Separation Bubbles
,”
Progress in Aeronautical Science
,
Pergamon
,
New York
.
10.
Hatman
,
A.
, and
Wang
,
T.
, 1998, “
Separated-Flow Transition, Part 1—Experimental Methodology, Part 2—Experimental Results, Part 3—Primary Modes and Vortex Dynamics
,” ASME Paper Nos., 98-GT-461, 98-GT-462 and 98-GT-463.
11.
Hatman
,
A.
, and
Wang
,
T.
, 1999, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
594
602
.
12.
Malkiel
,
E.
, and
Mayle
,
R. E.
, 1996, “
Transition in a Separation Bubble
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
752
759
.
13.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
, 2001, “
Turbulent Spot in Strong Adverse Pressure Gradient: Part 1—Spot Behavior
,” ASME Paper No. 2001-GT-0194.
14.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
, 2001, “
Turbulent Spot in Strong Adverse Pressure Gradient: Part 2—Spot Propagation and Spreading Rates
,” ASME Paper No. 2001-GT-0407.
15.
Watmuff
,
J. H.
, 1999, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
0022-1120,
397
, pp.
119
169
.
16.
Stieger
,
R.
,
Hollis
,
D.
, and
Hodson
,
H.
, 2003, “
Unsteady Surface Pressures Due to Wake Induced Transition in Laminar Separation Bubble on a LP Turbine Cascade
,” ASME Papar No. GT2003-38303.
17.
Voke
,
P. R.
, and
Yang
,
Z. Y.
, 1995, “
Numerical Study of Bypass Transition
,”
Phys. Fluids
1070-6631,
7
, pp.
2256
2264
.
18.
Yang
,
Z. Y.
, and
Voke
,
P. R.
, 2001, “
Large-Eddy Simulation of Boundary Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
0022-1120,
439
, pp.
305
333
.
19.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations. I: The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
164
.
20.
Voke
,
P. R.
, 1996, “
Subgrid-Scale Modeling at Low Mesh Reynolds Number
,”
Theor. Comput. Fluid Dyn.
0935-4964,
8
, pp.
131
143
.
21.
Huai
,
X.
,
Joslin
,
R. D.
, and
Piomelli
,
U.
, 1997, “
Large-Eddy Simulation of Transition to Turbulence in Boundary Layers
,”
Theor. Comput. Fluid Dyn.
0935-4964,
9
(
2
), pp.
149
163
.
22.
Piomelli
,
U.
,
Ferziger
,
J. H.
, and
Moin
,
P.
, 1987, “
Models for Large Eddy Simulation of Turbulent Channel Flows Including Transpiration
,” Thermoscience Division, Department of Mechanical Engineering,
Stanford University
, Report TF-32.
23.
Hue
,
K.
, and
Lee
,
S. L.
, 1991, “
A Numerical Technique for Two-Dimensional Grid Generation With Grid Control at All of the Boundaries
,”
J. Comput. Phys.
0021-9991,
96
, pp.
451
469
.
24.
Wu
,
X.
, and
Durbin
,
P. A.
, 2001, “
Evidence of Longitudinal Vortices Evolved from Distorted Wakes in Turbine Passage
,”
J. Fluid Mech.
0022-1120,
446
, pp.
199
228
.
25.
Williamson
,
C. H. K.
, and
Roshko
,
A.
, 1990, “
Measurements of Base Pressure in the Wake of a Cylinder at Low Reynolds Number
,”
Z. Flugwiss. Weltraumforsch.
0342-068X,
14
, p.
38
.
26.
Ghosal
,
S.
, and
Rogers
,
M. M.
, 1997, “
Anumerical Study of Self-Similarity in a Turbulent Plane Wake Using Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
9
, pp.
1729
39
.
27.
Sarkar
,
S.
, and
Voke
,
P. R.
, 2003, “
LES of Passing Wakes Influencing Transition on Turbine Blades
” Direct and Large-Eddy Simulation V,
Proceedings of ERCOFTAC workshop
,
R.
Friedrich
,
B. J.
Geurts
, and
O.
Métais
, ed.,
Kluwer Academic Publishers
,
Dordreecht
.
28.
Stadtmüller
,
P.
, and
Fottner
,
L.
, 2002, “
A Test Case and Experimental Measurements on T106
,” private communication with Lothar Hilgenfeld.
29.
Meyer
,
R. X.
, 1958, “
The Effects of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,”
ASME J. Basic Eng.
0021-9223,
80
, pp.
1544
1552
.
30.
Lee
,
S.
, and
Bershader
,
D.
, 1994, “
Head-On Parallel Blade-Vortex Interaction
,”
AIAA J.
0001-1452,
32
, pp.
16
22
.
31.
Saathoff
,
P. J.
, and
Melbourne
,
W. H.
, 1997, “
Effects Do Free-Stream Turbulence on Surface Pressure Flactuations in a Separation Bubble
,”
J. Fluid Mech.
0022-1120,
337
, pp.
1
24
.
32.
Luton
,
A.
,
Ragab
,
S.
, and
Telionis
,
D.
, 1995, “
Interaction of Spanwise Vortices With a Boundary Layer
,”
Phys. Fluids
1070-6631,
7
, pp.
2757
2765
.
33.
Alfredsson
,
P. H.
, and
Matsubara
,
M.
, 1996, “
Streak Structure in Transition
,”
Transitional Boundary Layer in Aeronautics
, (
R. A. W. M.
Henkes
and
L. J.
Ingen
, eds., pp.
374
386
,
Elsevier
,
New York
.
34.
Westin
,
K. J. A.
,
Boiko
,
A. V.
,
Klingmann
,
B. G. B.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
, 1994, “
Experiments in a Boundary Layer Subjected to Free Stream Turbulence. Part 1. Boundary Layer Structure and Receptivity
,”
J. Fluid Mech.
0022-1120,
281
, pp.
193
218
.
35.
Alam
,
M.
, and
Sandham
,
N. D.
, 2000, “
Direct Numerical Simulation of Short Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
0022-1120,
410
, pp.
1
28
.
36.
Michelassi
,
V.
,
Wissink
,
J. G.
, and
Rodi
,
W.
, 2003, “
Direct Numerical Simulation, Large Eddy Simulation and Unsteady Reynolds-Averaged Nanier-Stokes Simulations of Periodic Unsteady Flow in a Low-Pressure Turbine Cascade: A Comparison
,”
Bussei Kenkyu
0525-2997,
217
, pp.
403
411
.
You do not currently have access to this content.