The paper historically describes the application and development of the centrifugal compressor from the very beginning of its introduction until today. It focuses on selected practical and theoretical examples that—to the author’s opinion—pushed the centrifugal’s standard from simple, low efficiency designs to its current high level status. The main events related with this development like the impact of the industrial revolution and the introduction of jet propulsion are pointed out. The implication of improved theoretical tools becoming available with raising computer capacity and the impetus of advanced measurement techniques on the centrifugal’s improvement are described. A considerable number of references offers the possibility to engross the thoughts.

1.
Fransson, T. H., Hillon, F., and Klein, E., “An International, Electronic and Interactive Teaching and Life-Long Learning Platform for Gas Turbine Technology in the 21st Century,” ASME Paper 2000-GT-0581, p. 10.
2.
Kenny, D. P., 1984, “The History and Future of the Centrifugal Compressor in Aviation Gas Turbines,” SAE SP 602, p. 15.
3.
Stodola, A., 1924, Dampf-und Gasturbinen, Springer, Berlin.
4.
Eckert/Schnell 1961, Axial-und Radialkompressoren, Springer-Verlag, Berlin/Go¨ttingen/Heidelberg.
5.
Johnson
,
D. G.
,
1985
, “
The Norwegian Gas Turbine Pioneer: Aegidius Elling
,”
Energy World
,
pp.
10
13
.
6.
Balje
,
O. E.
,
1962
, “
A Study on Design Criteria and Matching of Turbomachines: Part B—Compressor and Pump performance and Matching of Turbocomponents
,”
ASME J. Eng. Gas Turbines Power
,
84
, pp.
103
114
.
7.
Balje, O. E., 1981, Turbomachines: A Guide to Design, Selection and Theory, John Wiley and Sons, New York, p. 513.
8.
Cordier, O., 1955, “Similarity Considerations in Turbomachines,” VDI Report 3, 85.
9.
Wiesner
,
F. J.
,
1979
, “
A New Appraisal of Reynolds Number Effects on Centrifugal Compressor Performance
,”
ASME J. Eng. Gas Turbines Power
,
101
, pp.
384
396
.
10.
Simon, H., and Bu¨lska¨mper, A., 1983, “On the Evaluation of Reynolds Number and Relative Surface Roughness Effects on Centrifugal Compressor Performance based on Systematic Experimental Investigations,” ASME-Paper 83-GT-118, p. 10.
11.
Casey, M. V., 1984, “The Effects of Reynolds Number on the Efficiency of Centrifugal Compressor Stages,” ASME-Paper 84-GT-247, p. 8.
12.
Albering, W., 1978, Applied Fluid Mechanics, 5th ed., Akademie-Verlag, East Berlin.
13.
Wislicenus, G. F., 1947, Fluid Mechanics of Turbo-Machinery, McGraw-Hill Book Co., New York.
14.
Stanitz
,
J. D.
,
1952
, “
Some Theoretical Aerodynamic Investigations of Impellers in Radial and Mixed Flow Centrifugal Compressors
,”
Trans. ASME
,
74
, p.
473
473
.
15.
Wiesner
,
F. J.
,
1967
, “
A Review of Slip Factors for Centrifugal Impellers
,”
ASME J. Eng. Gas Turbines Power
89
, pp.
558
592
.
16.
Kline
,
S. J.
,
Abbott
,
D. E.
, and
Fox
,
R. W.
,
1959
, “
Optimum Design of Straight-Walled Diffusers
,”
ASME J. Basic Eng.
,
81
(
3
), p.
321
321
.
17.
Waitman
,
B. A.
,
Reneau
,
L. R.
, and
Kline
,
S. J.
,
1961
, “
Effects of Inlet Conditions on Performance of Two-Dimensional Subsonic Diffusers
,”
ASME J. Basic Eng.
, Series D,
83
(
3
), pp.
349
360
.
18.
Sovran, G., Klomp, E. D., 1965, “Experimentally Determined Optimum Geometries for Rectilinear Diffusers with Rectangular, Conical and Annular Cross-Section,” General Motors Corp., Research Publication GMR-511, Nov. 16.
19.
Runstadler Jr., P. W., Dolan, F. X., and Dean, R. C., 1975, Diffuser Data Book, Creare TN-186, p. 88.
20.
Vrana, J. C., 1967, “Diffuser for Centrifugal Compressors,” U.S. Patent No. 3 333 762, August 1.
21.
Kenny, D. P., “A Novel Low cost Diffuser for High Performance Centrifugal Compressors,” ASME-Paper 68-GT-38, p. 12.
22.
Hayami
,
H.
,
Senoo
,
Y.
, and
Utsunomiya
,
K.
,
1990
, “
Application of a Low Solidity Cascade Diffuser to Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
112
, pp.
125
129
.
23.
Fischer
,
K.
, and
Thomas
,
D.
,
1932
, “
Investigation of the Flow Conditions in a Centrifugal Pump
,”
Trans. ASME
,
54
, p.
141
141
.
24.
Hamrick
,
J. T.
,
1956
, “
Some Aerodynamic Investigations in Centrifugal Impellers
,”
Trans. ASME
,
78
, pp.
591
602
.
25.
Stanitz, J. D., and Ellis, G., 1950, “Two-Dimensional Compressible Flow With Straight Blades,” NACA Report 954.
26.
Stanitz, J. D., and Prian, V. D., 1951, “A Rapid Approximate Method for Determining Velocity Distribution on Impeller Blades of Centrifugal Compressors,” NACA TN 2421.
27.
Hamrick, J. T., Ginsburg, A., and Osborn, W. M., 1952, “Method of Analysis for Compressible Flow Through Mixed Flow Centrifugal Impellers of Arbitrary Design,” NACA Report 1082.
28.
Stanitz, J. D., and Ellis, G., 1952, “Comparison of Two-and Three-dimensional Potential Flow Solutions in a Rotating Impeller Passage,” NACA TN 2086.
29.
Michel, D. J., Ginsburg, A., and Mizisin, J., 1951, “Experimental Investigation of Flow in the Rotating Passages of a 48-inch Impeller at Low Speed,” NACA RM E51D20.
30.
Hamrick, J. T., Mizisin, J., and Michel, D. J., 1954, “Study of Internal flow distribution Based on Measurements in a 48-inch Radial-Inlet Centrifugal Impeller,” NACA TN 3101.
31.
Dean
,
R. C.
, and
Senoo
,
Y.
,
1960
, “
Rotating Wakes in Vaneless Diffusers
,”
ASME J. Basic Eng.
,
82
, pp.
563
574
.
32.
Japikse, D., 1985, “Assessment of Single- and Two-Zone Modeling of Centrifugal Compressors. Studies in Component Performance. Part 3,” ASME-Paper 85-GT-73.
33.
Japikse, D., 1992, “Centrifugal Compressor Design and Performance. Course Proceedings,” pp. 2.55–2.73.
34.
Hamrick, J. T., Ginsburg, A., and Osborn, W., 1950, “Method of Analysis for Compressible Flow through Mixed Flow Centrifugal Impellers of Arbitrary Design,” Lewis Flight Laboratory, Cleveland, Ohio.
35.
Wu Chung Hua, “A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial- and Mixed-Flow Types,” NACA TN 2604.
36.
Katsanis, T., 1964, “Use of Arbitrary Quasi-Orthogonals for Calculating flow Distribution in the Meridional Plane of a Turbomachine,” NASA TN D-2546.
37.
Marsh, H., 1968, “A Digital Computer Program for the Through-Flow Fluid Mechanics in an Arbitrary Turbomachine using a Matrix Method. Her Majesty’s Stationary Office,” R.&M. No. 3509, London, p. 32.
38.
Howard
,
J. H. G.
, and
Osborne
,
C.
,
1977
, “
Centrifugal Compressor Flow Analysis Employing a Jet-Wake Passage Flow Model
,”
ASME J. Fluids Eng.
,
99
, pp.
141
147
.
39.
Hirsch, C. H., and Warzee, G., 1976, “A Finite Element Method for Through-Flow Calculations in Turbomachines,” ASME-Paper 76-FE-12, p. 13.
40.
Bosman
,
C.
, and
El-Shaarawi
,
M. A. I.
,
1977
, “
Quasi-Three-Dimensional Numerical Solution of Flow in Turbomachines
,”
ASME J. Fluids Eng.
,
99
, pp.
132
140
.
41.
Krain, H., 1975, “Contribution to the Calculation of Quasi-Three-Dimensional Flow in Centrifugal Compressor Rotors,” thesis Technical University of Aachen, p. 185 (in German).
42.
Japikse
,
D.
,
1976
, “
REVIEW-Prograss in Numerical Turbomachinery Analysis
,”
ASME J. Fluids Eng.
,
98
, pp.
592
606
.
43.
Meauze, G. et al., 1985, “3D Computation Techniques Applied to Internal Flows in Propulsion Systems,” AGARD-LS-140.
44.
Denton, J. D., “The Use of Distributed Body Forces to Simulate Viscous Effects in 3D Flow Calculations,” ASME-Paper 86-GT-144.
45.
Krain, H., and Hoffmann, B., 1998, “Flow Physics in High Pressure Ratio Centrifugal Compressures ASME-SUMMER MEETING,” FEDSM98-4853.
46.
Dawes, W. N., 1991, “The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution Adaptive Unstructured Mesh Methodology,” ASME Paper 91-GT-124.
47.
Moore
,
J.
, and
Moore
,
J. G.
,
1979
, “
A Calculation Procedure for 3D Viscous Compressible Duct Flow
,”
ASME J. Fluids Eng.
,
101
.
48.
Hah, C., 1983, “A Navier–Stokes Analysis of 3D Turbulent Flows inside Turbine Blade Rows at Design and Off-Design Conditions,” ASME-Paper 83-GT-34.
49.
Dawes, W. N., “Development of a 3D Navier–Stokes Solver for Application to all Types of Turbomachinery,” ASME-Paper 88-GT-70.
50.
Hah, C., Bryans, A. C., Moussa, Z., and Tomsho, M. E., 1988, “Application of Viscous Flow Computations for the Aerodynamic Performance of a Back-Swept Impeller at Various Operating Conditions,” ASME-Paper 88-GT-39.
51.
Hirsch, Ch., Kang, S., and Pointel, G., 1996, “A Numerically Supported Investigation of the 3D Flow in Centrifugal Impellers. Part I and II,” ASME-Papers 96-GT-151 and 96-GT-152.
52.
AEA GmbH: CFX-TASCFlow: www.cfx.aeat.com
53.
Fluent Inc.:www.fluent.com
54.
NUMECA International: FINE/TURBO:www.numeca.com
55.
Star-CD: Advanced CFD-Solver: www.cd-adapco.com
56.
Flow Science: Flow-3D:www.flow3d.com
57.
DLR: TRACE: www.dlr.de/en-at/numsim
58.
Dawes, W. N., 1994, “A Simulation of the Unsteady Interaction of a Centrifugal Impeller with its Vaned Diffuser: Flow Analysis,” ASME-Paper 94-GT-105.
59.
Krain, H., 2001, “Unsteady Flow of a Transonic Centrifugal Compressor, in Proceedings of the 15th International Symposium on Air Breathing Engines,” Bangalore, India, p. 9.
60.
Prian, V. D., and Michel, D. J., 1951, “An Analysis of Flow in Rotating Passage of Large Radial Inlet Centrifugal Compressor at Tip Speed of 700 Feet per Second NACA TN 2584.”
61.
Michel, D. J., Mizisin, J., and Prian, V. D., 1952, “Characteristics of a 48-Inch Centrifugal Compressor. I-Change in Blade Shape,” NACA TN 2706.
62.
Mizisin, J., and Michel, D. J., 1952, “Effect of Changing Passage Configuration on Internal Flow Characteristics of a 48-Inch Centrifugal Impeller. Change in Hub-Shape,” NACA TN 2835.
63.
Fowler, H. S., 1969, “Research on the internal Aerodynamics of the Centrifugal Compressor,” 11th Anglo-American Aeronautical Conference, London 8–12, Paper No. 19, p. 14.
64.
Eckardt
,
D.
,
1975
, “
Instantaneous Measurements in the Jet-Wake Discharge Flow of a Centrifugal Compressor Impeller
,”
ASME J. Eng. Power
,
97
, pp.
337
346
.
65.
Schodl, R., 1975, “A Dual focus Velocimeter for Turbomachine Applications,” Von Karman Institute, LS 78, p. 39.
66.
Eckardt, D., “Detailed Flow Investigations Within a High-Speed Centrifugal Compressor Impeller,” ASME-Paper 76-FE-13.
67.
Osborne, C., Runstadler, P. W., and Dodd, W., 1975, “Aerodynamic and Mechanical Design of an 8:1 Pressure Ratio Centrifugal Compressor,” NASA CR-134782, Creare TN-204, p. 139.
68.
Fo¨rster, W., Karpinski, G., Krain, H., Ro¨hle, I., and Schodl, R., 2000, “3-Component-Doppler-Laser-Two-Focus Velocimetry Applied to a Transonic Centrifugal Compressor, 10th International Symposium on Application of Laser Techniques to Fluid Mechanics.”
69.
Krain
,
H.
,
1981
, “
A Study on Centrifugal Impeller and Diffuser Flow
,”
ASME J. Eng. Power
,
103
, pp.
688
697
.
70.
Hah
,
C.
, and
Krain
,
H.
,
1990
, “
Secondary Flows and Vortex Motion in a High Efficiency Backswept Impeller at Design and Off-Design Conditions
,”
ASME J. Turbomach.
,
112
, pp.
7
13
.
71.
Krain, H., Hoffmann, B., and Pak, H., “Aerodynamics of a Centrifugal Impeller With Transonic Inlet Conditions,” ASME-Paper 95-GT-79, p. 9.
72.
Eisenlohr, G., Dalbert, P., Krain, H., Pro¨ll, H., Richter, F. A., and Rohne, K. H., 1998, “Analysis of the Transonic Flow at the Inlet of a High Pressure Ratio Centrifugal Impeller,” ASME 98-GT-24.
73.
Hathaway
,
M. J.
,
Chriss
,
R. M.
,
Wood
,
J. R.
, and
Strazisar
,
A. J.
,
1993
, “
Experimental and Computational Investigation of the NASA Low-Speed Centrifugal Compressor Flow Field
,”
ASME J. Turbomach.
,
115
, pp.
527
542
.
74.
Ahmed, N. A., and Elder, T. L., “Flow Investigations in a Small High Speed Impeller Passage Using Laser Anemometry,” ASME-Paper 90-GT-233.
75.
Skoch, G. J., Prahst, P. S., Wernet, M. P., Wood, J. R., and Strazisar, A. J., “Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller,” ASME-Paper 97-Gt-342.
76.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Skoch
,
G. J.
,
2001
, “
An Investigation of Surge in a High Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
, pp.
418
428
.
You do not currently have access to this content.