An intermittency transport model is proposed for modeling separated-flow transition. The model is based on earlier work on prediction of attached flow bypass transition and is applied for the first time to model transition in a separation bubble at various degrees of freestream turbulence. The model has been developed so that it takes into account the entrainment of the surrounding fluid. Experimental investigations suggest that it is this phenomena which ultimately determines the extent of the separation bubble. Transition onset is determined via a boundary layer correlation based on momentum thickness at the point of separation. The intermittent flow characteristic of the transition process is modeled via an intermittency transport equation. This accounts for both normal and streamwise variation of intermittency and hence models the entrainment of surrounding flow in a more accurate manner than alternative prescribed intermittency models. The model has been validated against the well-established T3L semicircular leading edge flat plate test case for three different degrees of freestream turbulence characteristic of turbomachinery blade applications.

1.
Emmons
,
H. W.
,
1951
, “
The Laminar-Turbulent Transition in a Boundary Layer—Part I
,”
J. Aerosp. Sci.
,
18
(
7
), pp.
490
498
.
2.
Dhawan
,
D.
, and
Narasimha
,
R.
,
1958
, “
Some Properties of Boundary Layer Flow During Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
,
3
, pp.
418
436
.
3.
Byggstoyl
,
S.
, and
Kollmann
,
W.
,
1986
, “
Stress Transport in the Rotational and Irrotational Zones of Turbulent Shear Flows
,”
Phys. Fluids
,
29
(
5
), pp.
1423
1429
.
4.
Cho, J. T., and Chung, M. K., 1990, “Intermittency Transport Modeling Based on Interactions Between Intermittency and Mean Velocity Gradients,” Engineering Turbulence Modelling and Experiments, W. Rodi and E. Ganic, eds., Elsevier, New York.
5.
Cho
,
J. T.
, and
Chung
,
M. K.
,
1992
, “
A k-ε-γ Equation Turbulence Model
,”
J. Fluid Mech.
,
237
, pp.
301
322
.
6.
Savill, A. M., 1995, “The Savill-Launder-Younis (SLY) RST Intermittency Model for Predicting Transition,” ERCOFTAC Bulletin, (24), pp. 37–41.
7.
Savill, A. M., 1996, “One-Point Closures Applied to Transition,” Turbulence and Transition Modeling, M. Hallba¨ck, D. S. Henningson, A. V. Johansson, and P. H. Alfredsson, eds., Kluwer, London.
8.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
9.
Walker
,
G. J.
,
1993
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
,
115
, pp.
207
217
.
10.
Sommers, D. M., 1981, “Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications,” NASA TP-1861.
11.
Kalitzin, G., Gould, A. R. B., and Benton, J. J., 1996, “Application of Two-Equation Turbulence Models in Aircraft Design,” AIAA Paper 96-0327.
12.
Byggstoyl
,
S.
, and
Kollmann
,
W.
,
1981
, “
Closure Model for Intermittent Turbulent Flows
,”
Int. J. Heat Mass Transfer
,
24
(
11
), pp.
1811
1822
.
13.
Byggstoyl
,
S.
, and
Kollmann
,
W.
,
1986
, “
A Closure Model for Conditioned Stress Equations and its Application for Turbulent Shear Flows
,”
Phys. Fluids
,
29
(
5
), pp.
1430
1440
.
14.
Dopazo
,
C.
,
1977
, “
On Conditioned Averages for Intermittent Turbulent Flows
,”
J. Fluid Mech.
,
81
, pp.
433
438
.
15.
Lumley, J. L., 1980, “Second Order Modelling of Turbulent Flows,” Prediction Methods for Turbulent Flows, W. Kollmann, ed., 1, Hemisphere, Washington, DC.
16.
Simon, F. F., and Stephens, C. A., 1991, “Modeling of Heat Transfer in Bypass Transitional Boundary-Layer Flows,” NASA TP-3170.
17.
Rodi
,
W.
, and
Scheuerer
,
G.
,
1986
, “
Scrutinizing the k-ε-I Urbulence Model Under Adverse Pressure Gradient Conditions
,”
ASME J. Fluids Eng.
,
108
, pp.
174
179
.
18.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
19.
Solomon, W. J., Walker, G. J., and Gostelow, J. P., 1996, “Transition Zone Predictions for Rapid Varying Flows,” Transitional Boundary Layers in Aeronautics, R. A. W. M. Hengen and J. L. van Ingen, eds.
20.
Yang
,
Z.
, and
Shih
,
T. H.
,
1993
, “
New Time Scale Based k-ε Model for Near-Wall Turbulence
,”
AIAA J.
,
31
(
7
), pp.
1191
1197
.
21.
Vicedo, 2001.
22.
Durbin
,
P. A.
,
1996
, “
On the k-ε Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
, pp.
89
90
.
23.
Dawes
,
W. N.
,
1992
, “
The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptative Unstructured Mesh Methodology
,”
ASME J. Turbomach.
,
114
, pp.
528
537
.
24.
Watterson, J. K., 1994, “A New, Pressure-Based, Unstructured Mesh, Navier-Stokes Solver and Application to 3D Compressible Vortex/Boundary Layer Interaction,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
25.
Vilmin, S., 1998, “Turbulence Modeling on Unstructured Meshes for 3D Turbomachinery CFD,” Ph.D. dissertation, E´cole Polytechnique Fe´de´rale de Lausane, Lausane, Switzerland.
26.
Savill, A. M., 1993, “Some Recent Progress in the Turbulence Modeling of By-Pass Transition,” Near-Wall Turbulent Flows, R. M. C. So, C. G. Speziale, and B. E. Launder, eds., Elsevier, New York, pp. 829–848.
27.
Savill, A. M., 1993, “Further Progress in the Turbulence Modelling of By-Pass Transition,” Engineering Turbulence Modeling and Experiments 2, W. Rodi and F. Martinelli, eds., Elsevier, New York, pp. 583–592.
28.
Coupland, J., 1995, “Transition Modelling for Turbomachinery Flows,” ERCOFTAC Bulletin, (24), pp. 5–8.
29.
Papanicolaou
,
E. L.
, and
Rodi
,
W.
,
1999
, “
Computation of Separated-Flow Transition Using a Two-Layer Model of Turbulence
,”
ASME J. Turbomach.
,
121
, pp.
78
87
.
30.
Kovasznay
,
L. S. G.
,
Kibens
,
C.
, and
Blackwelder
,
F.
,
1970
, “
Large-Scale Motion in the Intermittent Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
41
, pp.
283
325
.
31.
Driver, D. M., 1991, “Reynolds Stress Measurements in a Separated Boundary Layer Flow,” AIAA Paper 91-1787.
32.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
33.
Roberts
,
W. B.
,
1980
, “
Calculation of Laminar Separation Bubbles and Their Effect on Airfoil Performance
,”
AIAA J.
,
18
(
1
), pp.
25
31
.
34.
Schmidt
,
R. C.
, and
Patankar
,
S. V.
,
1991
, “
Simulating Boundary Layer Transition With Low-Reynolds Number k-ε Turbulence Models: Part 1—An Evaluation of Prediction Characteristics
,”
ASME J. Turbomach.
,
113
, pp.
10
17
.
35.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
36.
Townsend, A. A., 1956, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, UK.
You do not currently have access to this content.