Abstract

Laser-directed energy deposition (LDED) is a very useful additive manufacturing technique for repairing and manufacturing complex-shaped parts compared to traditional manufacturing techniques. However, the inadequate surface quality of the LDED fabricated components limits their direct utilization in different sectors. In addition, improving the surface finish of the curvilinear surfaces (useful for cooling channels and fuel nozzles) is also challenging. Hence, the current study focuses on surface modification of LDED fabricated SS 316L hollow cylindrical samples by combining electropolishing and electroless coating. We have performed electropolishing (two different currents, 8 A and 15 A) on the as-deposited (AD) sample with and without the application of the grinding process. The electropolishing reduced the roughness of the AD sample from 3.2 µm to 0.85 µm and 0.74 µm for 8 A and 15 A, respectively. The reduction in roughness was more at a higher current value due to the rapid anodic dissolution of the surface peaks. A further reduction in roughness was observed when grinding was performed before electropolishing. However, grinding resulted in higher material removal from the deposited surfaces and reduction in roughness was also minimal. Hence, only the electropolishing sample was selected for the next step, in which Ni-P electroless coating was performed on the surface to form a protective layer. After electroless coating, the coefficient of friction and wear-rate were reduced by 9.5% and 25.6% compared to the AD sample. Delamination and severe plastic deformation were the major wear mechanisms for the AD sample, whereas abrasion was dominant for the coated sample. The current work proposes a combined surface modification approach of electropolishing and electroless coating for the LDED processed components with curvilinear surfaces.

References

1.
Li
,
H.
,
Ramezani
,
M.
,
Li
,
M.
,
Ma
,
C.
, and
Wang
,
J.
,
2018
, “
Tribological Performance of Selective Laser Melted 316L Stainless Steel
,”
Tribol. Int.
,
128
, pp.
121
129
.
2.
Huang
,
G.
,
Wei
,
K.
,
Deng
,
J.
,
Liu
,
M.
, and
Zeng
,
X.
,
2022
, “
High-Power Laser Powder Bed Fusion of 316L Stainless Steel: Defects, Microstructure, and Mechanical Properties
,”
J. Manuf. Processes
,
83
, pp.
235
245
.
3.
Ralls
,
A. M.
,
Mao
,
B.
, and
Menezes
,
P. L.
,
2023
, “
Tribological Performance of Laser Shock Peened Cold Spray Additive Manufactured 316L Stainless Steel
,”
ASME J. Tribol.
,
145
(
7
), p.
071702
.
4.
Pradeep
,
P. I.
,
Kumar
,
V. A.
,
Sriranganath
,
A.
,
Singh
,
S. K.
,
Sahu
,
A.
,
Kumar
,
T. S.
,
Narayanan
,
P. R.
,
Arumugam
,
M.
, and
Mohan
,
M.
,
2020
, “
Characterization and Qualification of LPBF Additively Manufactured AISI-316L Stainless Steel Brackets for Aerospace Application
,”
Trans. Indian Natl. Acad. Eng.
,
5
(
3
), pp.
603
616
.
5.
Zhong
,
Y.
,
Rännar
,
L. E.
,
Liu
,
L.
,
Koptyug
,
A.
,
Wikman
,
S.
,
Olsen
,
J.
,
Cui
,
D.
, and
Shen
,
Z.
,
2017
, “
Additive Manufacturing of 316L Stainless Steel by Electron Beam Melting for Nuclear Fusion Applications
,”
J. Nucl. Mater.
,
486
, pp.
234
245
.
6.
Lodhi
,
M. J. K.
,
Deen
,
K. M.
,
Greenlee-Wacker
,
M. C.
, and
Haider
,
W.
,
2019
, “
Additively Manufactured 316L Stainless Steel With Improved Corrosion Resistance and Biological Response for Biomedical Applications
,”
Addit. Manuf.
,
27
, pp.
8
19
.
7.
Bartolomeu
,
F.
,
Buciumeanu
,
M.
,
Pinto
,
E.
,
Alves
,
N.
,
Carvalho
,
O.
,
Silva
,
F. S.
, and
Miranda
,
G.
,
2017
, “
316L Stainless Steel Mechanical and Tribological Behavior—A Comparison Between Selective Laser Melting, Hot Pressing and Conventional Casting
,”
Addit. Manuf.
,
16
, pp.
81
89
.
8.
Han
,
W.
, and
Fang
,
F.
,
2019
, “
Electropolishing of 316L Stainless Steel Using Sulfuric Acid-Free Electrolyte
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101015
.
9.
Li
,
G.
,
Xu
,
W.
,
Jin
,
X.
,
Liu
,
L.
,
Ding
,
S.
, and
Li
,
C.
,
2023
, “
The Machinability of Stainless Steel 316 L Fabricated by Selective Laser Melting: Typical Cutting Responses, White Layer and Evolution of Chip Morphology
,”
J. Mater. Process. Technol.
,
315
, p.
117926
.
10.
Druzgalski
,
C. L.
,
Ashby
,
A.
,
Guss
,
G.
,
King
,
W. E.
,
Roehling
,
T. T.
, and
Matthews
,
M. J.
,
2020
, “
Process Optimization of Complex Geometries Using Feed Forward Control for Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101169
.
11.
Wang
,
Q. Z.
,
Lin
,
X.
,
Wen
,
X. L.
,
Kang
,
N.
, and
Huang
,
W. D.
,
2021
, “
Microstructure and Wear Behavior of Nano-TiB2p/2024Al Matrix Composites Fabricated by Laser Direct Energy Deposition With Powder Feeding
,”
ASME J. Tribol.
,
143
(
5
), p.
051101
.
12.
Pacheco
,
J. T.
,
Meura
,
V. H.
,
Bloemer
,
P. R. A.
,
Veiga
,
M. T.
,
de Moura Filho
,
O. C.
,
Cunha
,
A.
,
Teixeira
,
M. F.
,
2022
, “
Laser Directed Energy Deposition of AISI 316L Stainless Steel: The Effect of Build Direction on Mechanical Properties in As-Built and Heat-Treated Conditions
,”
Adv. Ind. Manuf. Eng.
,
4
, p.
100079
.
13.
Cao
,
L.
,
Li
,
J.
,
Hu
,
J.
,
Liu
,
H.
,
Wu
,
Y.
, and
Zhou
,
Q.
,
2021
, “
Optimization of Surface Roughness and Dimensional Accuracy in LPBF Additive Manufacturing
,”
Opt. Laser Technol.
,
142
, p.
107246
.
14.
Tyagi
,
P.
,
Goulet
,
T.
,
Riso
,
C.
,
Stephenson
,
R.
,
Chuenprateep
,
N.
,
Schlitzer
,
J.
,
Benton
,
C.
, and
Garcia-Moreno
,
F.
,
2019
, “
Reducing the Roughness of Internal Surface of an Additive Manufacturing Produced 316 Steel Component by Chempolishing and Electropolishing
,”
Addit. Manuf.
,
25
, pp.
32
38
.
15.
Maiya
,
P. S.
, and
Busch
,
D. E.
,
1975
, “
Effect of Surface Roughness on Low-Cycle Fatigue Behavior of Type 304 Stainless Steel
,”
Metall. Trans. A
,
6
(
9
), pp.
1761
1766
.
16.
Ali
,
U.
,
Fayazfar
,
H.
,
Ahmed
,
F.
, and
Toyserkani
,
E.
,
2020
, “
Internal Surface Roughness Enhancement of Parts Made by Laser Powder-Bed Fusion Additive Manufacturing
,”
Vacuum
,
177
, p.
109314
.
17.
Basha
,
M. M.
, and
Sankar
,
M. R.
,
2023
, “
Experimental Investigations on Surface Morphology and Metallurgical Studies of Additive Manufactured Stainless Steel Features Finished by Electrolytic Ionic Interactions
,”
Tribol. Int.
,
188
, p.
108776
.
18.
Polishetty
,
A.
,
Shunmugavel
,
M.
,
Goldberg
,
M.
,
Littlefair
,
G.
, and
Singh
,
R. K.
,
2017
, “
Cutting Force and Surface Finish Analysis of Machining Additive Manufactured Titanium Alloy Ti-6Al-4V
,”
Procedia Manuf.
,
7
, pp.
284
289
.
19.
Zhang
,
J.
,
Chaudhari
,
A.
, and
Wang
,
H.
,
2019
, “
Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316L Stainless Steel
,”
J. Manuf. Processes
,
45
, pp.
710
719
.
20.
Yung
,
K. C.
,
Xiao
,
T. Y.
,
Choy
,
H. S.
,
Wang
,
W. J.
, and
Cai
,
Z. X.
,
2018
, “
Laser Polishing of Additive Manufactured CoCr Alloy Components With Complex Surface Geometry
,”
J. Mater. Process Technol.
,
262
, pp.
53
64
.
21.
Li
,
Y.
,
Zhang
,
Z.
, and
Guan
,
Y.
,
2020
, “
Thermodynamics Analysis and Rapid Solidification of Laser Polished Inconel 718 by Selective Laser Melting
,”
Appl. Surf. Sci.
,
511
, p.
145423
.
22.
Praharaj
,
A. K.
,
Chaurasia
,
J. K.
,
Chandan
,
G. R.
,
Bontha
,
S.
, and
Suvin
,
P. S.
,
2023
, “
Enhanced Tribological Performance of Laser Directed Energy Deposited Inconel 625 Achieved Through Laser Surface Remelting
,”
Surf. Coat. Technol.
,
477
, p.
130345
.
23.
An
,
L.
,
Wang
,
D.
, and
Zhu
,
D.
,
2022
, “
Improvement on Surface Quality of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion Via Electrochemical Polishing in NaNO3 Solution
,”
J. Manuf. Processes
,
83
, pp.
325
338
.
24.
Ur Rahman
,
Z.
,
Deen
,
K. M.
,
Cano
,
L.
, and
Haider
,
W.
,
2017
, “
The Effects of Parametric Changes in Electropolishing Process on Surface Properties of 316L Stainless Steel
,”
Appl. Surf. Sci.
,
410
, pp.
432
444
.
25.
Urlea
,
V.
, and
Brailovski
,
V.
,
2017
, “
Electropolishing and Electropolishing-Related Allowances for IN625 Alloy Components Fabricated by Laser Powder-Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4487
4499
.
26.
Demisse
,
W.
,
Mutunga
,
E.
,
Klein
,
K.
,
Rice
,
L.
, and
Tyagi
,
P.
,
2022
, “
Surface Finishing and Electroless Nickel Plating of Additively Manufactured (AM) Metal Components
,”
ASME 2021 International Mechanical Engineering Congress and Exposition
,
Nov. 1–5
, ASME Paper No. IMECE2021-71882.
27.
Mäkinen
,
M.
,
Jauhiainen
,
E.
,
Matilainen
,
V. P.
,
Riihimäki
,
J.
,
Ritvanen
,
J.
,
Piili
,
H.
, and
Salminen
,
A.
,
2015
, “
Preliminary Comparison of Properties Between Ni-Electroplated Stainless Steel Parts Fabricated With Laser Additive Manufacturing and Conventional Machining
,”
Phys. Procedia
,
78
, pp.
337
346
.
28.
Abouelata
,
A. M. A.
,
Attia
,
A.
, and
Youssef
,
G. I.
,
2022
, “
Electrochemical Polishing Versus Mechanical Polishing of AISI 304: Surface and Electrochemical Study
,”
J. Solid State Electrochem.
,
26
(
1
), pp.
121
129
.
29.
Rotty
,
C.
,
Doche
,
M. L.
,
Mandroyan
,
A.
,
Hihn
,
J. Y.
,
Montavon
,
G.
, and
Moutarlier
,
V.
,
2017
, “
Comparison of Electropolishing Behaviours of TSC, ALM and Cast 316L Stainless Steel in H3PO4/H2SO4
,”
Surf. Interfaces
,
6
, pp.
170
176
.
30.
Georgiza
,
E.
,
Novakovic
,
J.
, and
Vassiliou
,
P.
,
2013
, “
Characterization and Corrosion Resistance of Duplex Electroless Ni-P Composite Coatings on Magnesium Alloy
,”
Surf. Coat. Technol.
,
232
, pp.
432
439
.
31.
Wang
,
Y.
,
Shu
,
X.
,
Wei
,
S.
,
Liu
,
C.
,
Gao
,
W.
,
Shakoor
,
R. A.
, and
Kahraman
,
R.
,
2015
, “
Duplex Ni-P-ZrO2/Ni-P Electroless Coating on Stainless Steel
,”
J. Alloys Compd.
,
630
, pp.
189
194
.
32.
Habibzadeh
,
S.
,
Li
,
L.
,
Shum-Tim
,
D.
,
Davis
,
E. C.
, and
Omanovic
,
S.
,
2014
, “
Electrochemical Polishing as a 316L Stainless Steel Surface Treatment Method: Towards the Improvement of Biocompatibility
,”
Corros. Sci.
,
87
, pp.
89
100
.
33.
Han
,
W.
, and
Fang
,
F.
,
2019
, “
Fundamental Aspects and Recent Developments in Electropolishing
,”
Int. J. Mach. Tools Manuf.
,
139
, pp.
1
23
.
34.
Ding
,
Z.
,
Guo
,
F.
,
Guo
,
W.
,
Sun
,
G.
,
Lin
,
J.
,
Wu
,
C.
, and
Liang
,
S. Y.
,
2021
, “
Investigations on Grain Size Characteristics in Microstructure During Grinding of Maraging Steel 3J33
,”
J. Manuf. Processes
,
69
, pp.
434
450
.
35.
Aghababaei
,
R.
, and
Zhao
,
K.
,
2021
, “
Micromechanics of Material Detachment During Adhesive Wear: A Numerical Assessment of Archard's Wear Model
,”
Wear
,
476
, p.
203739
.
36.
Sahoo
,
P.
,
2009
, “
Wear Behaviour of Electroless Ni-P Coatings and Optimization of Process Parameters Using Taguchi Method
,”
Mater. Des.
,
30
(
4
), pp.
1341
1349
.
37.
Sahoo
,
P.
, and
Pal
,
S. K.
,
2007
, “
Tribological Performance Optimization of Electroless Ni-P Coatings Using the Taguchi Method and Grey Relational Analysis
,”
Tribol. Lett.
,
28
(
2
), pp.
191
201
.
38.
Hanief
,
M.
, and
Wani
,
M. F.
,
2016
, “
Effect of Surface Roughness on Wear Rate During Running-In of En31-Steel: Model and Experimental Validation
,”
Mater. Lett.
,
176
, pp.
91
93
.
39.
Shi
,
H.
,
Du
,
S.
,
Sun
,
C.
,
Song
,
C.
,
Yang
,
Z.
, and
Zhang
,
Y.
,
2018
, “
Behavior of Wear Debris and Its Action Mechanism on the Tribological Properties of Medium-Carbon Steel With Magnetic Field
,”
Materials
,
12
(
1
), pp.
1
19
.
40.
Sakhamuri
,
M. S. D.
,
Harvey
,
T. J.
,
Vierneusel
,
B.
, and
Wood
,
R. J. K.
,
2023
, “
Wear Induced Changes in Surface Topography During Running-In of Rolling-Sliding Contacts
,”
Wear
,
522
, p.
204685
.
41.
Biswas
,
P.
,
Das
,
S. K.
, and
Sahoo
,
P.
,
2022
, “
Duplex Electroless Ni-P/Ni-Cu-P Coatings: Preparation, Evaluation of Microhardness, Friction, Wear, and Corrosion Performance
,”
J. Electrochem Sci. Eng.
,
12
, pp.
1261
1282
.
42.
Rendón
,
J.
, and
Olsson
,
M.
,
2009
, “
Abrasive Wear Resistance of Some Commercial Abrasion Resistant Steels Evaluated by Laboratory Test Methods
,”
Wear
,
267
(
11
), pp.
2055
2061
.
43.
Vishnu
,
V.
,
Prabhu
,
T. R.
,
Imam
,
M.
, and
Vineesh
,
K. P.
,
2024
, “
High-Temperature Dry Sliding Wear Behavior of Additively Manufactured Austenitic Stainless Steel (316L)
,”
Wear
,
540–541
, p.
205259
.
44.
So
,
H.
,
Yu
,
D. S.
, and
Chuang
,
C. Y.
,
2002
, “
Formation and Wear Mechanism of Tribo-Oxides and the Regime of Oxidational Wear of Steel
,”
Wear
,
253
(
9–10
), pp.
1004
1015
.
45.
Mrowec
,
S.
, and
Grzesik
,
Z.
,
2004
, “
Oxidation of Nickel and Transport Properties of Nickel Oxide
,”
J. Phys. Chem. Solids
,
65
(
10
), pp.
1651
1657
.
46.
Wang
,
S. Q.
,
Wei
,
M. X.
, and
Zhao
,
Y. T.
,
2010
, “
Effects of the Tribo-Oxide and Matrix on Dry Sliding Wear Characteristics and Mechanisms of a Cast Steel
,”
Wear
,
269
(
5–6
), pp.
424
434
.
47.
Bai
,
L.
,
Wan
,
S.
,
Yi
,
G.
,
Shan
,
Y.
,
Pham
,
S. T.
,
Tieu
,
A. K.
,
Li
,
Y.
, and
Wang
,
R.
,
2021
, “
Temperature-Mediated Tribological Characteristics of 40CrNiMoA Steel and Inconel 718 Alloy During Sliding Against Si3N4 Counterparts
,”
Friction
,
9
(
5
), pp.
1175
1197
.
48.
Sun
,
W.
,
Tan
,
A. W. Y.
,
King
,
D. J. Y.
,
Khun
,
N. W.
,
Bhowmik
,
A.
,
Marinescu
,
I.
, and
Liu
,
E.
,
2020
, “
Tribological Behavior of Cold Sprayed Inconel 718 Coatings at Room and Elevated Temperatures
,”
Surf. Coat. Technol.
,
385
, p.
125386
.
You do not currently have access to this content.