Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study investigates the mechanisms of jittering in telescopic cylinders and proposes effective mitigation strategies. The focus is on the dynamic behavior of hydraulic cylinders under low-speed conditions, particularly the stick-slip phenomenon. Through finite element analysis using abaqus and tribological tests, the impact of various factors on the friction and wear properties of cylinder components is examined. Findings reveal that optimizing the average friction coefficient, stick-slip amplitude, and stick-slip time can significantly reduce jitter and creep in hydraulic cylinders. The results provide valuable insights for improving the performance and longevity of hydraulic systems in engineering machinery.

References

1.
Skaare
,
B.
,
Hörnsten
,
B.
, and
Nielsen
,
F. G.
,
2013
, “
Modeling, Simulation and Control of a Wind Turbine With a Hydraulic Transmission System
,”
Wind Energy
,
16
(
8
), pp.
1259
1276
.
2.
He
,
X.
,
Xiao
,
G.
,
Hu
,
B.
,
Tan
,
L.
,
Tang
,
H.
,
He
,
S.
, and
He
,
Z.
,
2020
, “
The Applications of Energy Regeneration and Conversion Technologies Based on Hydraulic Transmission Systems: A Review
,”
Energy Convers. Manage.
,
205
(
1
), p.
112413
.
3.
Jiang
,
S.
,
Zhang
,
K.
,
Wang
,
H.
,
Zhong
,
D.
,
Su
,
J.
, and
Liu
,
Z.
,
2021
, “
Research on Adaptive Friction Compensation of Digital Hydraulic Cylinder Based on LuGre Friction Model
,”
Shock Vib.
,
2021
(
1
), p.
8854424
.
4.
Nie
,
J.
, and
Nie
,
H.
,
2013
, “
Research on the Crawling Mechanism of Giant Hydraulic Press at a Low-Speed Running State
,”
2013 Fourth International Conference on Digital Manufacturing & Automation
,
Qingdao, China
,
June 29–30
, pp.
1123
1126
.
5.
Basit
,
K.
,
Shams
,
H.
,
Khan
,
M. A.
, and
Mansoor
,
A.
,
2023
, “
Vibration Analysis Approach to Model Incremental Wear and Associated Sound in Multi-contact Sliding Friction Mechanisms
,”
ASME J. Tribol.
,
145
(
9
), p.
091109
.
6.
Li
,
F.
, and
Yin
,
M.
,
2018
, “
2018 International Conference on Mechanical, Electronic, Control and Automation Engineering
,”
2018 International Conference on Mechanical, Electronic, Control and Automation Engineering
,
Qingdao, China
,
Mar. 30–31
, Atlantis Press, pp.
174
178
.
7.
Goedecke
,
A.
, and
Mock
,
R.
,
2009
, “
Creep Relaxation of an Elastic–Perfectly Plastic Hemisphere in Fully Plastic Contact
,”
ASME J. Tribol.
,
131
(
2
), p.
021407
.
8.
Li
,
J.
,
Li
,
H.
,
Cui
,
H.
, and
Zhu
,
Y.
,
2018
, “
Nonlinear Dynamics Characteristics and Influence Factors Analysis of Servo Hydraulic Cylinder
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
232
(
20
), pp.
3629
3638
.
9.
Lin
,
R. C.
,
Guo
,
Y. B.
, and
Li
,
Y. P.
,
2011
, “
Low-Speed Dynamic Characteristics of Hydraulic Clinder Based on Nonlinear Coupling-Force
,”
Adv. Mater. Res.
,
199–200
(
1
), pp.
41
47
. www.scientific.net/AMR.199-200.41
10.
Heipl
,
O.
, and
Murrenhoff
,
H.
,
2015
, “
Friction of Hydraulic Rod Seals at High Velocities
,”
Tribol. Int.
,
85
(
1
), pp.
66
73
.
11.
Qiu
,
Z.
,
Min
,
R.
,
Wang
,
D.
, and
Fan
,
S.
,
2022
, “
Energy Features Fusion Based Hydraulic Cylinder Seal Wear and Internal Leakage Fault Diagnosis Method
,”
Measurement
,
195
(
1
), p.
111042
.
12.
Bhaumik
,
S.
,
Kumar
,
S. R.
, and
Kumaraswamy
,
A.
,
2014
, “
Experimental Investigation and FE Modelling of Contact Mechanics Phenomenon in Reciprocating Hydraulic U-Seals for Defence Applications
,”
Appl. Mech. Mater.
,
592–594
(
1
), pp.
1950
1954
. www.scientific.net/AMM.592-594.1950
13.
Cheng
,
D.
,
Gu
,
L.
, and
Sun
,
Y.
,
2022
, “
Mixed Lubrication Modeling of Multi-lip Reciprocating Seals Based on Elastohydrodynamic Lubrication Theory
,”
Machines
,
10
(
6
), p.
483
.
14.
Huang
,
Z.
,
Peng
,
X.
, and
Li
,
G.
,
2018
, “
Optimization of the Dynamic Stiffness of the Seismic Vibrator
,”
Adv. Mech. Eng.
,
10
(
11
), p.
1687814018809809
.
15.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Rolling Element Bearing Fault Diagnosis Using Wavelet Transform
,”
Neurocomputing
,
74
(
10
), pp.
1638
1645
.
16.
Ma
,
Z.-S.
,
Li
,
X.
,
He
,
M.-X.
,
Jia
,
S.
,
Yin
,
Q.
, and
Ding
,
Q.
,
2020
, “
Recent Advances in Data-Driven Dynamics and Control
,”
Int. J. Dyn. Control
,
8
(
4
), pp.
1200
1221
.
17.
Shen
,
X.
,
Huang
,
Q.
, and
Xiong
,
G.
,
2022
, “
Modelling and Predictive Investigation on the Vibration Response of a Propeller Shaft Based on a Convolutional Neural Network
,”
Mech. Sci.
,
13
(
1
), pp.
485
494
.
18.
Yuan
,
X.
,
Wang
,
J.
,
Lian
,
Z.
, and
Wang
,
G.
,
2021
, “
Partial Lubrication Modeling of Reciprocating Rod Seals Based on a Developed EHL Method
,”
Tribol. Int.
,
153
(
1
), p.
106585
.
19.
Yao
,
Q.
,
Dong
,
P.
,
Zhao
,
Z.
,
Li
,
Z.
,
Wei
,
T.
,
Wu
,
J.
,
Qiu
,
J.
, and
Li
,
W.
,
2023
, “
Temperature Dependent Tensile Fracture Strength Model of Rubber Materials Based on Mooney-Rivlin Model
,”
Eng. Fract. Mech.
,
292
(
1
), p.
109646
.
20.
Elkholy
,
K. N.
, and
Khonsari
,
M. M.
,
2008
, “
Experimental Investigation on the Stick-Slip Phenomenon in Granular Collision Lubrication
,”
ASME J. Tribol.
,
130
(
2
), p.
021302
.
21.
Lim
,
J.
,
Lee
,
K.-H.
, and
Lee
,
C.-H.
,
2017
, “
Frictional Hysteresis Model for Stick–Slip Behavior of Magnetorheological Elastomer Under Various Magnetic Field Strengths
,”
ASME J. Tribol.
,
140
(
3
), p.
031607
.
22.
Tariku
,
F. A.
, and
Rogers
,
R. J.
,
2000
, “
Improved Dynamic Friction Models for Simulation of One-Dimensional and Two-Dimensional Stick-Slip Motion
,”
ASME J. Tribol.
,
123
(
4
), pp.
661
669
.
23.
Wang
,
D.
,
Xu
,
C.
, and
Wan
,
Q.
,
2017
, “
Modeling Tangential Contact of Rough Surfaces With Elastic- and Plastic-Deformed Asperities
,”
ASME J. Tribol.
,
139
(
5
), p.
051401
.
You do not currently have access to this content.