Graphical Abstract Figure

(a) Plots of J*(r*) and V*(r*) in closed forms (with and without discharging) and solved by the discharging numerical model at the contact phase with δ*=0.4667 and ΔV=30 V. The dash-dotted line indicates the periphery of the contact area. (b) Analytical solutions of V(g) with and without discharging and the modified Paschen law.

Graphical Abstract Figure

(a) Plots of J*(r*) and V*(r*) in closed forms (with and without discharging) and solved by the discharging numerical model at the contact phase with δ*=0.4667 and ΔV=30 V. The dash-dotted line indicates the periphery of the contact area. (b) Analytical solutions of V(g) with and without discharging and the modified Paschen law.

Close modal

Abstract

Electrical contact is fundamental to almost every aspect of modern industry, including the fast-growing electric vehicle industry. In metallic contacts in atmospheric conditions, most of the electrical current passes via the microjunctions formed between two electrodes. The classic electrical contact theory predicts an infinite current density at the circular contact periphery. In the present work, we explore the influence of the dielectric breakdown of air outside the contact area on the electrical contact interface. Incorporating the discharging boundary condition governed by the modified Paschen law, we develop the numerical model as well as two sets of closed-form solutions for low applied voltage cases where two electrodes are in solid–solid contact and complete separation, respectively. For the Hertzian contact, the present work theoretically proves that the ignorance of discharge can lead to a singular current density at the contact periphery and an overestimation of the electrical contact resistance. The current density monotonically increases along the radial direction to a finite value at the contact area periphery and is followed by a monotonic drop within the discharge zone. The present study serves as a foundation for the modeling of discharging rough surface electrical contact and sheds light on the machine element surface damages caused by the electrical discharge machining.

References

1.
Hemanth
,
G.
,
Suresha
,
B.
, and
Ananthapadmanabha
,
B.
,
2021
, “
Hybrid and Electric Vehicle Tribology: A Review
,”
Surf. Topogr. Metrol. Prop.
,
9
(
4
), p.
043001
.
2.
Whittle
,
M.
,
Trevelyan
,
J.
, and
Tavner
,
P.
,
2013
, “
Bearing Currents in Wind Turbine Generators
,”
J. Renew. Sustain. Energy
,
5
, p.
053128
.
3.
Zuo
,
X.
,
Xie
,
W.
, and
Zhou
,
Y.
,
2022
, “
Influence of Electric Current on the Wear Topography of Electrical Contact Surfaces
,”
ASME J. Tribol.
,
144
(
7
), p.
071702
.
4.
Taheri
,
P.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Investigating Electrical Contact Resistance Losses in Lithium-Ion Battery Assemblies for Hybrid and Electric Vehicles
,”
J. Power. Sources.
,
196
(
15
), pp.
6525
6533
.
5.
Holm
,
R.
,
2013
,
Electric Contacts: Theory and Application
,
Springer Science & Business Media
,
Berlin
.
6.
Zhang
,
X.
,
Luo
,
C.
,
Menga
,
N.
,
Zhang
,
H.
,
Li
,
Y.
, and
Zhu
,
S. P.
,
2023
, “
Pressure and Polymer Selections for Solid-State Batteries Investigated With High-Throughput Simulations
,”
Cell Rep. Phys. Sci.
,
4
(
3
), p.
101328
.
7.
Wu
,
G.
,
Dong
,
K.
,
Xu
,
Z.
,
Xiao
,
S.
,
Wei
,
W.
,
Chen
,
H.
,
Li
,
J.
, et al.
2022
, “
Pantograph–Catenary Electrical Contact System of High-Speed Railways: Recent Progress, Challenges, and Outlooks
,”
Railw. Eng. Sci.
,
30
(
4
), pp.
437
467
.
8.
Liu
,
Z.
, and
Zhang
,
L.
,
2020
, “
A Review of Failure Modes, Condition Monitoring and Fault Diagnosis Methods for Large-Scale Wind Turbine Bearings
,”
Measurement
,
149
, p.
107002
.
9.
Prashad
,
H.
,
2002
, “
Diagnosis of Rolling-Element Bearings Failure by Localized Electrical Current Between Track Surfaces of Races and Rolling-Elements
,”
ASME J. Tribol.
,
124
(
3
), pp.
468
473
.
10.
Jackson
,
R. L.
, and
Angadi
,
S.
,
2023
, “
Electrical Contact During a Rolling Vibratory Motion Considering Mixed Lubrication
,”
ASME J. Tribol.
,
145
(
8
), p.
082201
.
11.
Llewellyn-Jones
,
F.
,
1957
,
The Physics of Electrical Contacts
,
Clarendon Press
,
Oxford
.
12.
Malucci
,
R. D.
,
2021
, “
Making Electrical Contact to Layered Surfaces
,” 2021 IEEE 66th Holm Conference on Electrical Contacts (HLM),
IEEE
, pp.
184
187
.
13.
Nakamura
,
M.
,
1993
, “
Constriction Resistance of Conducting Spots by the Boundary Element Method
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
16
(
3
), pp.
339
343
.
14.
Ghaednia
,
H.
,
Pope
,
S. A.
,
Jackson
,
R. L.
, and
Marghitu
,
D. B.
,
2016
, “
A Comprehensive Study of the Elasto-Plastic Contact of a Sphere and a Flat
,”
Tribol. Int.
,
93
, pp.
78
90
.
15.
Shah
,
S.
,
Krithivasan
,
V.
, and
Jackson
,
R. L.
,
2011
, “
An Electro-Mechanical Contact Analysis of a Three-Dimensional Sinusoidal Surface Against a Rigid Flat
,”
Wear
,
270
(
11–12
), pp.
914
921
.
16.
Xu
,
Y.
,
Chen
,
Y.
,
Zhang
,
A.
,
Jackson
,
R. L.
, and
Prorok
,
B. C.
,
2018
, “
A New Method for the Measurement of Real Area of Contact by the Adhesive Transfer of Thin Au Film
,”
Tribol. Lett.
,
66
, pp.
1
20
.
17.
Xu
,
Y.
,
Jackson
,
R. L.
,
Chen
,
Y.
,
Zhang
,
A.
, and
Prorok
,
B. C.
,
2020
, “
A Comparison of Nanoscale Measurements With the Theoretical Models of Real and Nominal Contact Areas
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
234
(
11
), pp.
1735
1745
.
18.
Bowden
,
F. P.
, and
Williamson
,
J. B. P.
,
1958
, “
Electrical Conduction in Solids I. Influence of the Passage of Current on the Contact Between Solids
,”
Proc. R. Soc. London., A.
,
246
(
1244
), pp.
1
12
.
19.
Jackson
,
R. L.
,
Crandall
,
E. R.
, and
Bozack
,
M. J.
,
2015
, “
Rough Surface Electrical Contact Resistance Considering Scale Dependent Properties and Quantum Effects
,”
J. Appl. Phys.
,
117
(
19
), p. 195101.
20.
Malucci
,
R. D.
,
2005
, “
Multi-Spot Model Showing the Effects of Nano-Spot Sizes
,” Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts, 2005,
IEEE
, pp.
291
297
.
21.
Wexler
,
G.
,
1966
, “
The Size Effect and the Non-Local Boltzmann Transport Equation in Orifice and Disk Geometry
,”
Proc. Phys. Soc.
,
89
(
4
), p.
927
.
22.
Sharvin
,
Y. V.
,
1965
, “
On the Possible Method for Studying Fermi Surfaces
,”
J. Exp. Theor. Phys.
,
48
, pp.
984
985
.
23.
Leidner
,
M.
,
Schmidt
,
H.
, and
Myers
,
M.
,
2010
, “
Simulation of the Current Density Distribution Within Electrical Contacts
,” 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts,
IEEE
, pp.
1
9
.
24.
Li
,
Y. H.
,
Shen
,
F.
,
Güler
,
M. A.
, and
Ke
,
L. -L.
,
2024
, “
An Efficient Method for Electro-Thermo-Mechanical Coupling Effect in Electrical Contact on Rough Surfaces
,”
Int. J. Heat. Mass. Transfer.
,
226
, p.
125492
.
25.
Wang
,
W.
,
Sui
,
Y.
,
Ge
,
X.
, and
Zhang
,
H.
,
2024
, “
An Efficient Method for Solving Electrical Constriction Resistance of Rough Surfaces
,”
Tribol. Int.
,
97
, p.
109808
.
26.
Sui
,
Y.
,
Wang
,
W.
,
Zhang
,
H.
, and
Xie
,
Y.
,
2023
, “
Modeling 3D Sliding Electrical Contact Considering Fully Coupled Thermal-Mechanical-Electrical Effects
,”
Tribol. Int.
,
184
, p.
108491
.
27.
He
,
W.
,
Feng
,
Y.
,
Wu
,
S.
,
Wu
,
K.
,
Ye
,
J.
, and
Wang
,
W.
,
2024
, “
Numerical Simulation on the Effect of Current Intensity on Electrical Contact Performance of Electrical Connectors Subject to Micro-slip Wear
,”
Wear
,
542
, p.
205270
.
28.
Greenwood
,
J. A.
,
1966
, “
Constriction Resistance and the Real Area of Contact
,”
Br. J. Appl. Phys.
,
17
(
12
), p.
1621
.
29.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London., A.
,
295
(
1442
), pp.
300
319
.
30.
Kogut
,
L.
, and
Komvopoulos
,
K.
,
2004
, “
Electrical Contact Resistance Theory for Conductive Rough Surfaces Separated by a Thin Insulating Film
,”
J. Appl. Phys.
,
95
(
2
), pp.
576
585
.
31.
Jackson
,
R. L.
,
Malucci
,
R. D.
,
Angadi
,
S.
, and
Polchow
,
J. R.
,
2009
, “
A Simplified Model of Multiscale Electrical Contact Resistance and Comparison to Existing Closed Form Models
,” 2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts,
IEEE
, pp.
28
35
.
32.
Yastrebov
,
V. A.
,
Cailletaud
,
G.
,
Proudhon
,
H.
,
Mballa
,
F. S. M.
,
Noël
,
S.
,
Testé
,
P.
, and
Houzé
,
F.
,
2015
, “
Three-Level Multi-Scale Modeling of Electrical Contacts Sensitivity Study and Experimental Validation
,” 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm),
IEEE
, pp.
414
422
.
33.
Ta
,
W.
,
Qiu
,
S.
,
Wang
,
Y.
,
Yuan
,
J.
,
Gao
,
Y.
, and
Zhou
,
Y.
,
2021
, “
Volumetric Contact Theory to Electrical Contact Between Random Rough Surfaces
,”
Tribol. Int.
,
160
, p.
107007
.
34.
Barber
,
J.
,
2003
, “
Bounds on the Electrical Resistance Between Contacting Elastic Rough Bodies
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
459
(
2029
), pp.
53
66
.
35.
Zhai
,
C.
,
Hanaor
,
D.
,
Proust
,
G.
,
Brassart
,
L.
, and
Gan
,
Y.
,
2016
, “
Interfacial Electro-Mechanical Behaviour at Rough Surfaces
,”
Extreme Mech. Lett.
,
9
, pp.
422
429
.
36.
Ciavarella
,
M.
,
Murolo
,
G.
, and
Demelio
,
G.
,
2004
, “
The Electrical/Thermal Conductance of Rough Surfaces—The Weierstrass–Archard Multiscale Model
,”
Int. J. Solids. Struct.
,
41
(
15
), pp.
4107
4120
.
37.
Paggi
,
M.
, and
Barber
,
J.
,
2011
, “
Contact Conductance of Rough Surfaces Composed of Modified RMD Patches
,”
Int. J. Heat. Mass. Transfer.
,
54
(
21–22
), pp.
4664
4672
.
38.
Persson
,
B.
,
2022
, “
On the Electric Contact Resistance
,”
Tribol. Lett.
,
70
(
3
), p.
88
.
39.
Malucci
,
R. D.
,
2009
, “
The Impact of Spot Size and Location on Current Density
,” 2009 Proceedings of the 55th IEEE Holm Conference on Electrical Contacts,
IEEE
, pp.
208
213
.
40.
Rosenfeld
,
A.
, and
Timsit
,
R.
,
1981
, “
The Potential Distribution in a Constricted Cylinder: An Exact Solution
,”
Quart. Appl. Math.
,
39
(
3
), pp.
405
417
.
41.
Malucci
,
R. D.
, and
Ruffino
,
F. R.
,
2008
, “
A Method for Power Rating Contacts Using Voltage Drop
,” 2008 Proceedings of the 54th IEEE Holm Conference on Electrical Contacts,
IEEE
, pp.
225
231
.
42.
Malucci
,
R. D.
,
2016
, “
Single and Multi-Spot Current Density Distribution
,” 2016 IEEE 62nd Holm Conference on Electrical Contacts (Holm),
IEEE
, pp.
100
104
.
43.
Malucci
,
R. D.
,
2017
, “
The Impact on Current Density and Constriction Resistance From Bridge Structures in Real Contacts
,” 2017 IEEE Holm Conference on Electrical Contacts,
IEEE
, pp.
59
62
.
44.
Malucci
,
R. D.
,
2018
, “
The Effects of Bridge Structures on Current Density and Temperature Distributions
,” 2018 IEEE Holm Conference on Electrical Contacts,
IEEE
, pp.
43
47
.
45.
He
,
F.
,
Xie
,
G.
, and
Luo
,
J.
,
2020
, “
Electrical Bearing Failures in Electric Vehicles
,”
Friction
,
8
, pp.
4
28
.
46.
Janik
,
J. R.
,
Saha
,
S.
,
Jackson
,
R. L.
, and
Mills
,
G.
,
2024
, “
Exploring the Boundaries of Electrically Induced Bearing Damage in Grease-Lubricated Rolling Contacts
,”
Lubricants
,
12
(
8
), p.
268
.
47.
Bond
,
S.
,
Jackson
,
R. L.
, and
Mills
,
G.
,
2024
, “
The Influence of Various Grease Compositions and Silver Nanoparticle Additives on Electrically Induced Rolling-Element Bearing Damage
,”
Friction
,
12
(
4
), pp.
796
811
.
48.
Chen
,
Y.
,
Jha
,
S.
,
Raut
,
A.
,
Zhang
,
W.
, and
Liang
,
H.
,
2020
, “
Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs
,”
Front. Mech. Eng.
,
6
, p.
571464
.
49.
Jackson
,
R. L.
,
Saha
,
S.
, and
Janik
,
J. R.
,
2025
, “
A Statistical Prediction of Electrical Discharge Initiation and Semi-Analytical Transient Mixed Lubrication Model of a Rolling Element
,”
ASME J. Tribol.
,
147
(
5
), p.
051103
.
50.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
51.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R Soc. Lond. A. Math. Phys. Sci.
,
324
(
1558
), pp.
301
313
.
52.
Go
,
D. B.
, and
Venkattraman
,
A.
,
2014
, “
Microscale Gas Breakdown: Ion-Enhanced Field Emission and the Modified Paschen’s Curve
,”
J. Phys. D: Appl. Phys.
,
47
(
50
), p.
503001
.
53.
Husain
,
E.
, and
Nema
,
R.
,
1982
, “
Analysis of Paschen Curves for Air, N2 and SF6 Using the Townsend Breakdown Equation
,”
IEEE Trans. Electr. Insul.
,
EI-17
(
4
), pp.
350
353
.
54.
Torres
,
J.
, and
Dhariwal
,
R.
,
1999
, “
Electric Field Breakdown at Micrometre Separations
,”
Nanotechnology
,
10
(
1
), p.
102
.
55.
Lee
,
R.
,
Chung
,
H.
, and
Chiou
,
Y.
,
2001
, “
Arc Erosion Behaviour of Silver Electric Contacts in a Single Arc Discharge Across a Static Gap
,”
IEE Proc.-Sci. Measur. Technol.
,
148
(
1
), pp.
8
14
. https://digital-library.theiet.org/doi/10.1049/ip-smt%3A20010181
56.
Slade
,
P. G.
, and
Taylor
,
E. D.
,
2002
, “
Electrical Breakdown in Atmospheric Air Between Closely Spaced (0.2/spl mu/m-40/spl mu/m) Electrical Contacts
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
3
), pp.
390
396
.
57.
Xu
,
Y.
,
Wu
,
S.
,
Zhu
,
Y.
, and
Wu
,
J.
,
2024
, “
An Adhesion Model for Contact Electrification
,”
Int. J. Mech. Sci.
,
272
, p.
109280
.
58.
Polonsky
,
I.
, and
Keer
,
L.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-level Multi-summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.
59.
Bemporad
,
A.
, and
Paggi
,
M.
,
2015
, “
Optimization Algorithms for the Solution of the Frictionless Normal Contact Between Rough Surfaces
,”
Int. J. Solids. Struct.
,
69
, pp.
94
105
.
60.
Xi
,
Y.
,
Almqvist
,
A.
,
Shi
,
Y.
,
Mao
,
J.
, and
Larsson
,
R.
,
2017
, “
Linear Complementarity Framework for 3D Steady-State Rolling Contact Problems Including Creepages With Isotropic and Anisotropic Friction for Circular Hertzian Contact
,”
Tribol. Trans.
,
60
(
5
), pp.
832
844
.
61.
Mahdy
,
A.
,
Anis
,
H.
, and
Ward
,
S.
,
1998
, “
Electrode Roughness Effects on the Breakdown of Air-Insulated Apparatus
,”
IEEE Trans. Dielectr. Electr. Insul.
,
5
(
4
), pp.
612
617
.
62.
Greenwood
,
J. A.
, and
Johnson
,
K. L.
,
1998
, “
An Alternative to the Maugis Model of Adhesion Between Elastic Spheres
,”
J. Phys. D: Appl. Phys.
,
31
(
22
), p.
3279
.
63.
Griffith
,
A. A.
,
1921
, “
VI. The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. Lond. Ser. A. Contain. Pap. Math. Phys. Character
,
221
(
582–593
), pp.
163
198
.
64.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids.
,
8
(
2
), pp.
100
104
.
65.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid. Interface. Sci.
,
150
(
1
), pp.
243
269
.
66.
Wilson
,
W. E.
,
Angadi
,
S. V.
, and
Jackson
,
R. L.
,
2008
, “
Electrical Contact Resistance Considering Multi-Scale Roughness
,” 2008 Proceedings of the 54th IEEE Holm Conference on Electrical Contacts,
IEEE
, pp.
190
197
.
67.
Sobolev
,
Y. I.
,
Adamkiewicz
,
W.
,
Siek
,
M.
, and
Grzybowski
,
B. A.
,
2022
, “
Charge Mosaics on Contact-Electrified Dielectrics Result From Polarity-Inverting Discharges
,”
Nat. Phys.
,
18
(
11
), pp.
1347
1355
.
68.
Bleger
,
A.
,
Leighton
,
M.
, and
Morris
,
N.
,
2024
, “
Automotive E-Motor Bearing Electrical Discharge Phenomena: An Experimental and Numerical Investigation
,”
Tribol. Int.
,
191
, p.
109140
.
69.
Mendez
,
P. F.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Scaling Analysis of a Moving Point Heat Source in Steady-State on a Semi-Infinite Solid
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
140
(
8
), p.
081301
.
70.
Hill
,
R.
, and
Storåkers
,
B. A.
,
1990
, “
A Concise Treatment of Axisymmetric Indentation in Elasticity
,”
Elasticity: Math. Methods Appl.
, pp.
199
210
.
71.
Greenwood
,
J. A.
,
2010
, “
Contact Between an Axisymmetric Indenter and a Viscoelastic Half-Space
,”
Int. J. Mech. Sci.
,
52
(
6
), pp.
829
835
.
72.
Liang
,
X.
,
Chen
,
S.
,
Li
,
C. Y.
,
Niu
,
X.
, and
Wang
,
G.
,
2024
, “
A General Contact Model for Rough Surfaces Based on the Incremental Concept
,”
Tribol. Int.
,
198
, p.
109882
.
You do not currently have access to this content.