Abstract

The working characteristics of wet clutches have an important impact on the safety performance of vehicles. In order to obtain the thermoelastic instability characteristics of wet clutch separate plate, a finite element modeling method is proposed. The temperature field calculation model of separate plate and its thermo-hydro-mechanical coupling relationship are constructed. The distribution law of high-temperature hot spots on the surface of separate plate is obtained and the thermoelastic instability mechanism is revealed. Effectiveness of the simulation model is verified by road test, and surface topography of separate plate is observed by scanning electron microscope. A thermoelastic instability calculation model considering different material parameters is established. The temperature field distribution law is reviewed under different elastic moduli, specific heat capacities, thermal conductivities, and thermal expansion coefficients. Results show that increasing the specific heat capacity and thermal conductivity of the separate plate, decreasing the elastic modulus and thermal expansion coefficient can improve the stability of the system. The thermal conductivity and thermal expansion coefficient have important effects on the thermoelastic instability. The specific heat capacity has a certain effect, and the elastic modulus’ effect is the least. The research results of this paper can provide theoretical support for optimizing the structure of wet clutch and improving the stability of the system.

References

1.
Yu
,
L.
,
Ma
,
B.
,
Chen
,
M.
,
Li
,
H.
,
Liu
,
J.
, and
Zheng
,
L.
,
2019
, “
Numerical and Experimental Studies on the Characteristics of Friction Torque Based on Wet Paper-Based Clutches
,”
Tribol. Int.
,
131
, pp.
541
553
.
2.
Xiong
,
C.
,
Chen
,
M.
, and
Yu
,
L.
,
2020
, “
Analytical Model and Material Equivalent Methods for Steady State Heat Partition Coefficient Between Two Contact Discs in Multi-Disc Clutch
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
234
(
2–3
), pp.
857
871
.
3.
Zhao
,
E. H.
,
Ma
,
B.
, and
Li
,
H. Y.
,
2018
, “
Numerical and Experimental Studies on Tribological Behaviors of Cu-Based Friction Pairs From Hydrodynamic to Boundary Lubrication
,”
Tribol. Trans.
,
61
(
2
), pp.
347
356
.
4.
Li
,
M.
,
Khonsari
,
M. M.
,
McCarthy
,
D. M. C.
, and
Lundin
,
J.
,
2015
, “
On the Wear Prediction of the Paper-Based Friction Material in a Wet Clutch
,”
Wear
,
334–335
, pp.
56
66
.
5.
Li
,
M.
,
Khonsari
,
M. M.
,
Lingesten
,
N.
,
Marklund
,
P.
,
McCarthy
,
D. M. C.
, and
Lundin
,
J.
,
2016
, “
Model Validation and Uncertainty Analysis in the Wear Prediction of a Wet Clutch
,”
Wear
,
364–365
, pp.
112
121
.
6.
Barber
,
J. R.
,
1969
, “
Thermoelastic Instabilities in the Sliding of Conforming Solids
,”
Proc. R. Soc. Lond. A. Math. Phys. Sci.
,
312
(
1510
), pp.
381
394
.
7.
Meng
,
X.
,
Bai
,
S.
, and
Peng
,
X.
,
2014
, “
Lubrication Film Flow Control by Oriented Dimples for Liquid Lubricated Mechanical Seals
,”
Tribol. Int.
,
77
, pp.
132
141
.
8.
Yi
,
Y. B.
,
2006
, “
Finite Element Analysis of Thermoelastodynamic Instability Involving Frictional Heating
,”
ASME J. Tribol.
,
128
(
4
), pp.
718
724
.
9.
Graf
,
M.
, and
Ostermeyer
,
G. P.
,
2012
, “
Hot Bands and Hot Spots: Some Direct Solutions of Continuous Thermoelastic Systems With Friction
,”
Phys. Mesomech.
,
15
(
5–6
), pp.
306
315
.
10.
Ostermeyer
,
G. P.
, and
Graf
,
M.
,
2013
, “
Wear-Induced Migration of Hot Bands: Models and Comparison With Experiments
,”
SAE Int. J. Mater. Manuf.
,
7
(
1
), pp.
17
22
.
11.
Afferrante
,
L.
, and
Ciavarella
,
M.
,
2004
, “
Instability of Thermoelastic Contact for Two Half-Planes Sliding Out-of-Plane With Contact Resistance and Frictional Heating
,”
J. Mech. Phys. Solids
,
52
(
7
), pp.
1527
1547
.
12.
Afferrante
,
L.
,
Ciavarella
,
M.
, and
Barber
,
J. R.
,
2006
, “
Sliding Thermoelastodynamic Instability
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
462
(
2071
), pp.
2161
2176
.
13.
Qiao
,
Y.
,
Yi
,
Y. B.
,
Wang
,
T.
,
Cui
,
H.
, and
Lian
,
Z.
,
2022
, “
Effect of Wear on Thermoelastic Instability Involving Friction Pair Thickness in Automotive Clutches
,”
ASME J. Tribol.
,
144
(
4
), p.
041202
.
14.
Li
,
M.
,
Khonsari
,
M. M.
,
McCarthy
,
D. M. C.
, and
Lundin
,
J.
,
2017
, “
Parametric Analysis of Wear Factors of a Wet Clutch Friction Material With Different Groove Patterns
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
231
(
8
), pp.
1056
1067
.
15.
Papangelo
,
A.
, and
Ciavarella
,
M.
,
2020
, “
The Effect of Wear on ThermoElastic Instabilities (TEI) in Bimaterial Interfaces
,”
Tribol. Int.
,
142
, p.
105977
.
16.
Xie
,
F.
,
Cui
,
J.
,
Sheng
,
G.
,
Wang
,
C.
, and
Zhang
,
X.
,
2014
, “
Thermal Behavior of Multidisk Friction Pairs in Hydroviscous Drive Considering Inertia Item
,”
ASME J. Tribol.
,
136
(
4
), p.
041707
.
17.
Li
,
J.
,
Zhang
,
Y.
,
Wang
,
X.
,
Gu
,
J.
,
Chen
,
C.
, and
Tao
,
L.
,
2020
, “
Influence Upon Temperature Field Distribution With Straight Grooves Parameters of Clutch Friction Disk
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
234
(
9
), pp.
2263
2278
.
18.
Abbasi
,
S.
,
Teimourimanesh
,
S.
,
Vernersson
,
T.
,
Sellgren
,
U.
,
Olofsson
,
U.
, and
Lundén
,
R.
,
2013
, “
Temperature and Thermoelastic Instability at Tread Braking Using Cast Iron Friction Material
,”
Wear
,
314
(
1–2
), pp.
171
180
.
19.
Yi
,
Y. B.
, and
Bendawi
,
A.
,
2012
, “
Effect of Convective Cooling on Frictionally Excited Thermoelastic Instability
,”
Wear
,
296
(
1–2
), pp.
583
589
.
20.
Caprioli
,
S.
,
Vernersson
,
T.
,
Handa
,
K.
, and
Ikeuchi
,
K.
,
2016
, “
Thermal Cracking of Railway Wheels: Towards Experimental Validation
,”
Tribol. Int.
,
94
, pp.
409
420
.
21.
Ahn
,
S. H.
, and
Jang
,
Y. H.
,
2010
, “
Frictionally Excited Thermo-Elastoplastic Instability
,”
Tribol. Int.
,
43
(
4
), pp.
779
784
.
22.
Zhao
,
J.
,
Ma
,
B.
,
Li
,
H.
, and
Yi
,
Y.
,
2013
, “
The Effect of Lubrication Film Thickness on Thermoelastic Instability Under Fluid Lubricating Condition
,”
Wear
,
303
(
1–2
), pp.
146
153
.
23.
Mao
,
J. J.
,
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2015
, “
Thermoelastic Instability of a Functionally Graded Layer Interacting With a Homogeneous Layer
,”
Int. J. Mech. Sci.
,
99
, pp.
218
227
.
24.
Yi
,
Y.-B.
,
Barber
,
J. R.
, and
Zagrodzki
,
P.
,
2000
, “
Eigenvalue Solution of Thermoelastic Instability Problems Using Fourier Reduction
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
456
(
2003
), pp.
2799
2821
.
25.
Abdullah
,
O. I.
,
Abd Al-Sahb
,
W.
, and
Al-Shabibi
,
A.
,
2015
, “Finite Element Analysis of Transient Thermoelastic Behavior in Multi-Disc Clutches,” SAE Technical Paper, April 2015.
26.
Yu
,
L.
,
Ma
,
B.
,
Li
,
H.
,
Liu
,
J.
, and
Li
,
M.
,
2019
, “
Numerical and Experimental Studies of a Wet Multidisc Clutch on Temperature and Stress Fields Excited by the Concentrated Load
,”
Tribol. Trans.
,
62
(
1
), pp.
8
21
.
27.
Mao
,
J. J.
,
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2014
, “
Thermoelastic Contact Instability of a Functionally Graded Layer and a Homogeneous Half-Plane
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
3962
3972
.
28.
Mao
,
J. J.
,
Ke
,
L. L.
,
Yang
,
J.
,
Kitipornchai
,
S.
, and
Wang
,
Y. S.
,
2017
, “
Thermoelastic Instability of Functionally Graded Coating With Arbitrarily Varying Properties Considering Contact Resistance and Frictional Heat
,”
Appl. Math. Model.
,
43
, pp.
521
537
.
29.
Liu
,
J.
,
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2019
, “
Frictionally Excited Thermoelastic Dynamic Instability of Functionally Graded Materials
,”
Acta Mech. Sin. Xuebao
,
35
(
1
), pp.
99
111
.
30.
Teo
,
K. M.
, and
Lafdi
,
K.
,
2001
, “
Thermal Diffusivity Mapping of Friction Surface Using Photo-Thermal Technique
,”
ASME J. Tribol.
,
123
(
4
), pp.
785
790
.
31.
Yu
,
L.
,
Ma
,
B.
,
Chen
,
M.
,
Li
,
H.
, and
Liu
,
J.
,
2020
, “
Investigation on the Thermodynamic Characteristics of the Deformed Separate Plate in a Multi-disc Clutch
,”
Eng. Fail. Anal.
,
110
, p.
104385
.
32.
Yu
,
L.
,
Ma
,
B.
,
Chen
,
M.
,
Li
,
H.
,
Liu
,
J.
, and
Li
,
M.
,
2019
, “
Investigation on the Failure Mechanism and Safety Mechanical-Thermal Boundary of a Multi-Disc Clutch
,”
Eng. Fail. Anal.
,
103
, pp.
319
334
.
33.
Yevtushenko
,
A. A.
, and
Grzes
,
P.
,
2016
, “
Mutual Influence of the Sliding Velocity and Temperature in Frictional Heating of the Thermally Nonlinear Disc Brake
,”
Int. J. Therm. Sci.
,
102
, pp.
254
262
.
34.
Cui
,
J.
,
Xie
,
F.
, and
Wang
,
C.
,
2015
, “
Numerical Investigation on Thermal Deformation of Friction Pair in Hydro-Viscous Drive
,”
Appl. Therm. Eng.
,
90
, pp.
460
470
.
35.
Li
,
M.
,
Ma
,
B.
,
Li
,
H.
,
Li
,
H.
, and
Yu
,
L.
,
2017
, “
Analysis of the Thermal Buckling of Annular Disks in Clutches Under the Condition of Radial Temperature Gradient
,”
J. Therm. Stress.
,
40
(
10
), pp.
1275
1284
.
36.
Yang
,
L.
,
Ma
,
B.
,
Ahmadian
,
M.
,
Li
,
H.
, and
Vick
,
B.
,
2016
, “
Pressure Distribution of a Multidisc Clutch Suffering Frictionally Induced Thermal Load
,”
Tribol. Trans.
,
59
(
6
), pp.
983
992
.
37.
Wu
,
W.
,
Xiao
,
B.
,
Yuan
,
S.
, and
Hu
,
C.
,
2018
, “
Temperature Distributions of an Open Grooved Disk System During Engagement
,”
Appl. Therm. Eng.
,
136
, pp.
349
355
.
38.
Sun
,
D. Y.
,
Hu
,
F. B.
,
Deng
,
T.
, and
Luo
,
Y.
,
2010
, “
Simulation and Experiment for Warp Characteristic of Wet Multiple Disc Clutches
,”
J. Chongqing Univ.
,
33
(
5
), pp.
1
6
.
39.
Wu
,
P. H.
,
Xu
,
J.
, and
Zhou
,
X. J.
,
2019
, “
Numerical and Experimental Research on Engagement Process of Wet Multi-Plate Friction Clutches With Groove Consideration
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
10
), pp.
1464
1482
.
40.
Zhao
,
J.
,
Chen
,
Z.
,
Yang
,
H.
, and
Yi
,
Y. B.
,
2016
, “
Finite Element Analysis of Thermal Buckling in Automotive Clutch Plates
,”
J. Therm. Stress.
,
39
(
1
), pp.
77
89
.
41.
Zhigang
,
Z.
,
Ziyang
,
Z.
,
Meilin
,
L.
,
Yonglong
,
C.
,
Jiaxue
,
L. I.
, and
Xuan
,
L. U. O.
,
2021
, “
Analysis on Mechanical Response of Wet Clutch Steel Discs
,”
J. Chongqing Univ. Technol. Nat. Sci.
,
35
(
6
), pp.
87
95
.
42.
Ganesh
,
K. C.
,
Dhanasekaran
,
K.
,
Saravanan
,
P.
, and
Panda
,
R.
,
2021
, “
Failure Analysis of Multi-Plate Wet-Clutch Used in Off-Highway Transmission
,”
Eng. Fail. Anal.
,
127
, p.
105534
.
43.
Laguna-Camacho
,
J. R.
,
Juárez-Morales
,
G.
,
Calderón-Ramón
,
C.
,
Velázquez-Martínez
,
V.
,
Hernández-Romero
,
I.
,
Méndez-Méndez
,
J. V.
, and
Vite-Torres
,
M.
,
2015
, “
A Study of the Wear Mechanisms of Disk and Shoe Brake Pads
,”
Eng. Fail. Anal.
,
56
, pp.
348
359
.
44.
Lee
,
K. J.
,
Wiest
,
M. M.
, and
Carlin
,
J. B.
,
2014
, “
Statistics for Clinicians: An Introduction to Linear Regression
,”
J. Paediatr. Child Health
,
50
(
12
), pp.
940
943
.
You do not currently have access to this content.