Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The material removal process takes place due to phenomena such as plastic deformation and brittle fracture. A long continuous chip is formed when the plastic deformation dominates, whereas a fracture-induced discontinuous chip is formed when the brittle fracture dominates. The means of material removal changes at a certain cutting depth for a particular material, the so-called transition depth of cut (TDoC). This article aims to predict the TDoC while including the effect of friction between the tool and workpiece. We propose a modification to a recently developed model (Aghababaei et al., 2021, “Cutting Depth Dictates the Transition From Continuous to Segmented Chip Formation,” Phy. Rev. Lett., 127(23), pp. 235502) to incorporate the effect of friction. The model predicts a transitional depth of cut as a function of tool geometry, material properties, and friction. The model is supported by performing orthogonal cutting experiments on different polymers such as polymethyl methacrylate (PMMA), polyoxymethylene (POM), and polycarbonate (PC). The model is also compared with existing models in the literature, where an improvement in the prediction of TDoC is shown. Moreover, the effect of the friction coefficient and rake angle on the TDoC is discussed. The results show that transitional cutting depth is reduced by increasing the friction coefficient. Alternatively, the TDoC reaches its maximum at an optimum rake angle, which is a function of the specific material being cut. The model aids in accurately predicting the TDoC, a crucial factor for optimizing various material removal processes.

References

1.
Airao
,
J.
,
Khanna
,
N.
, and
Nirala
,
C. K.
,
2022
, “
Tool Wear Reduction in Machining Inconel 718 by Using Novel Sustainable Cryo-Lubrication Techniques
,”
Tribol. Int.
,
175
, p.
107813
.
2.
Airao
,
J.
, and
Nirala
,
C. K.
,
2022
, “
Analytical Modelling of Machining Forces and Friction Characteristics in Ultrasonic Assisted Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021014
.
3.
Arif
,
M.
,
Xinquan
,
Z.
,
Rahman
,
M.
, and
Kumar
,
S.
,
2013
, “
A Predictive Model of the Critical Undeformed Chip Thickness for Ductile–Brittle Transition in Nano-Machining of Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
114
122
.
4.
Blake
,
P. N.
, and
Scattergood
,
R. O.
,
1990
, “
Ductile-Regime Machining of Germanium and Silicon
,”
J. Am. Ceram. Soc.
,
73
(
4
), pp.
949
957
.
5.
Bifano
,
T. G.
,
1988
, “
Ductile-Regime Grinding of Brittle Materials
,”
PhD thesis
,
North Carolina State University
,
Raleigh, NC
.
6.
Liu
,
K.
, and
Li
,
X. P.
,
2001
, “
Ductile Cutting of Tungsten Carbide
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
348
354
.
7.
Venkatachalam
,
S.
,
Li
,
X.
, and
Liang
,
S. Y.
,
2009
, “
Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3306
3319
.
8.
Yang
,
M.
,
Li
,
C.
,
Zhang
,
Y.
,
Jia
,
D.
,
Zhang
,
X.
,
Hou
,
Y.
,
Li
,
R.
, and
Wang
,
J.
,
2017
, “
Maximum Undeformed Equivalent Chip Thickness for Ductile-Brittle Transition of Zirconia Ceramics Under Different Lubrication Conditions
,”
Int. J. Mach. Tools Manuf.
,
122
, pp.
55
65
.
9.
Liu
,
W.
,
Tang
,
D.
,
Liu
,
R.
,
Deng
,
Z.
,
Gu
,
H.
, and
Liu
,
S.
,
2022
, “
Ductile Regime Grinding of Silicon Nitride Ceramics Based on Dynamic Critical Grinding Depth
,”
Int. J. Mach. Tools Manuf.
,
121
(
9–10
), pp.
6431
6438
.
10.
Aghababaei
,
R.
,
Malekan
,
M.
, and
Budzik
,
M.
,
2021
, “
Cutting Depth Dictates the Transition From Continuous to Segmented Chip Formation
,”
Phy. Rev. Lett.
,
127
(
23
), p.
235502
.
11.
Williams
,
J. G.
,
Patel
,
Y.
, and
Blackman
,
B. R. K.
,
2010
, “
A Fracture Mechanics Analysis of Cutting and Machining
,”
Eng. Fract. Mech.
,
77
(
2
), pp.
293
308
.
12.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
13.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
.
14.
Airao
,
J.
, and
Nirala
,
C. K.
,
2022
, “
Finite Element Modeling and Experimental Validation of Tool Wear in Hot-Ultrasonic Assisted Turning of Nimonic 90
,”
J. Vib. Eng. Technol.
,
11
(
8
), pp.
3687
3705
.
15.
Airao
,
J.
, and
Nirala
,
C. K.
,
2021
, “
Finite Element Modeling of Ultrasonic Assisted Turning With External Heating
,”
Proc. CIRP
,
102
, pp.
61
66
.
16.
Jensen
,
H. M.
, and
Thouless
,
M. D.
,
1993
, “
Effects of Residual Stresses in the Blister Test
,”
Int. J. Solids Struct.
,
30
(
6
), pp.
779
795
.
17.
Iqbal
,
S. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2009
, “
A Comparative Study of the Tool-Chip Contact Length in Turning of Two Engineering Alloys for a Wide Range of Cutting Speeds
,”
Int. J. Adv. Manuf. Technol.
,
42
(
1–2
), pp.
30
40
.
18.
Fatima
,
A.
, and
Mativenga
,
P. T.
,
2013
, “
A Review of Tool-Chip Contact Length Models in Machining and Future Direction for Improvement
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
227
(
3
), pp.
345
356
.
19.
Airao
,
J.
,
Kishore
,
H.
, and
Nirala
,
C. K.
,
2021
, “
Tool Wear Behavior in μ-Turning of Nimonic 90 Under Vegetable Oil-Based Cutting Fluid
,”
ASME J. Micro- Nano-Manuf.
,
9
(
4
), p.
041003
.
20.
Liang
,
X.
,
Liu
,
Z.
,
Wang
,
B.
,
Wang
,
C.
, and
Cheung
,
C. F.
,
2023
, “
Friction Behaviors in the Metal Cutting Process: State of the Art and Future Perspectives
,”
Int. J. Extreme Manuf.
,
5
(
1
), p.
012002
.
21.
Feng
,
G.
, and
Sagapuram
,
D.
,
2021
, “
A Strong Basis for Friction as the Origin of the Size Effect in Cutting of Metals
,”
Int. J. Mach. Tools Manuf.
,
168
, p.
103741
.
22.
Son
,
S. M.
,
Lim
,
H. S.
, and
Ahn
,
J. H.
,
2005
, “
Effects of the Friction Coefficient on the Minimum Cutting Thickness in Micro Cutting
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
529
535
.
23.
Kita
,
Y.
,
Ido
,
M.
, and
Hata
,
S.
,
1978
, “
The Mechanism of Metal Removal by an Abrasive Tool
,”
Wear
,
45
(
1
), pp.
185
193
.
24.
Malekan
,
M.
,
Mostofa
,
M. G.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2012
, “
Modeling of Minimum Uncut Chip Thickness in Micro Machining of Aluminum
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
553
559
.
25.
Yang
,
M.
,
Li
,
C.
,
Zhang
,
Y.
,
Jia
,
D.
,
Li
,
R.
,
Hou
,
Y.
, and
Cao
,
H.
,
2019
, “
Effect of Friction Coefficient on Chip Thickness Models in Ductile-Regime Grinding of Zirconia Ceramics
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
2617
2632
.
26.
Liu
,
Q.
,
Liao
,
Z.
,
Cheng
,
J.
,
Xu
,
D.
, and
Chen
,
M.
,
2021
, “
Mechanism of Chip Formation and Surface-Defects in Orthogonal Cutting of Soft-Brittle Potassium Dihydrogen Phosphate Crystals
,”
Mater. Des.
,
198
, p.
109327
.
27.
Huang
,
W.
, and
Yan
,
J.
,
2023
, “
Effect of Tool Geometry on Ultraprecision Machining of Soft-Brittle Materials: A Comprehensive Review
,”
Int. J. Extreme Manuf.
,
5
(
1
), p.
012003
.
28.
Yan
,
J.
,
2011
, “
Ultraprecision Cutting of Photoresist/Gold Composite Microstructures
,”
CIRP Ann.
,
60
(
1
), pp.
133
136
.
29.
Airao
,
J.
, and
Nirala
,
C. K.
,
2022
, “
Effect of Microstructure on Tool Wear in Micro-Turning of Wrought and Selective Laser Melted Ti6Al4V
,”
Mater. Lett.
,
327
, p.
133078
.
30.
Chen
,
S. T.
, and
Yang
,
K. C.
,
2022
, “
Semi-Ductile Cutting Regime Technology for Machining Zerodur Glass-Ceramic Microstructures
,”
Precis. Eng.
,
74
, pp.
92
109
.
31.
Zhang
,
S.
,
Zhang
,
H.
, and
Zong
,
W.
,
2019
, “
Modeling and Simulation on the Effect of Tool Rake Angle in Diamond Turning of KDP Crystal
,”
J. Mater. Process. Technol.
,
273
, p.
116259
.
32.
Cain
,
V.
,
Thijs
,
L.
,
Humbeeck
,
J. V.
, and
Hooreweder
,
B. V.
,
2015
, “
Crack Propagation and Fracture Toughness of Ti6Al4V Alloy Produced by Selective Laser Melting
,”
Addit. Manuf.
,
5
, pp.
68
76
.
33.
Mabrouki
,
T.
,
Courbon
,
C.
,
Zhang
,
Y.
,
Rech
,
J.
,
Nelias
,
D.
,
Asad
,
M.
,
Hamdi
,
H.
,
Belhadi
,
S.
, and
Salvatore
,
F.
,
2016
, “
Some Insight on the Modelling of Chip Formation and Its Morphology During Metal Cutting Operations
,”
C.R. Mec.
,
344
(
4–5
), pp.
335
354
.
34.
Bucci
,
R.
,
1996
,
Fatigue and Fracture
, Vol.
19
,
ASM Handbook
.
35.
Cheng
,
J.
, and
Gong
,
Y. D.
,
2013
, “
Experimental Study on Ductile-Regime Micro-Grinding Character of Soda-Lime Glass With Diamond Tool
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
147
160
.
36.
Yoon
,
H. S.
,
Lee
,
S.
, and
Min
,
S.
,
2018
, “
Investigation of Ductile-Brittle Transition in the Machining of Yttrium-Stabilized Zirconia (YSZ)
,”
Procedia Manuf.
,
26
, pp.
446
453
.
37.
Huang
,
N.
,
Yan
,
Y.
,
Zhou
,
P.
,
Kang
,
R.
, and
Guo
,
D.
,
2019
, “
Elastic Plastic Deformation of Single Crystal Silicon in Nano-Cutting by a Single-Tip Tool
,”
Jpn. J. Appl. Phys.
,
58
(
8
), p.
086501
.
38.
Raval
,
S.
,
Sidpara
,
A. M.
, and
Paul
,
J.
,
2022
, “
A Review on Micro Machining of Polymer Composites
,”
J. Manuf. Processes
,
77
, pp.
87
113
.
39.
Rangnathan
,
N.
,
Anto Lawrence
,
F.
,
Rajkumar
,
S.
,
Joseph Bensingh
,
R.
,
Abdul Kader
,
M.
, and
Nayak
,
S. K.
,
2020
, “
Influence of Surface Roughness on Tribological and Mechanical Properties of Micro-Milled and Laser Ablated Poly (Methyl Methacrylate) PMMA Organic Glass
,”
Polym. Test.
,
81
, p.
106184
.
40.
Qi
,
H.
,
Chen
,
T.
,
Yao
,
L.
, and
Zuo
,
T.
,
2009
, “
Micromachining of Microchannel on the Polycarbonate Substrate With CO2 Laser Direct-Writing Ablation
,”
Opt. Lasers Eng.
,
47
(
5
), pp.
594
598
.
41.
Liu
,
K.
,
Li
,
X. P.
, and
Liang
,
S. Y.
,
2003
, “
The Mechanism of Ductile Chip Formation in the Cutting of Brittle Materials
,”
Int. J. Adv. Manuf. Technol.
,
33
(
9–10
), pp.
875
884
.
42.
Neo
,
W. K.
,
Kumar
,
A. S.
, and
Rahman
,
M.
,
2012
, “
A Review on the Current Research Trends in Ductile Regime Machining
,”
Int. J. Adv. Manuf. Technol.
,
63
(
5–8
), pp.
465
480
.
43.
Aramcharoen
,
A.
,
Sean
,
S. K. C.
, and
Kui
,
L.
,
2012
, “
An Experimental Study of Micromilling of Polymer Materials for Microfluidic Applications
,”
Int. J. Abras. Technol.
,
5
(
4
), pp.
286
298
.
44.
Jardret
,
V.
,
Zahouani
,
H.
,
Loubet
,
J. L.
, and
Mathia
,
T. G.
,
1998
, “
Understanding and Quantification of Elastic and Plastic Deformation During a Scratch Test
,”
Wear
,
218
(
1
), pp.
8
14
.
45.
Li
,
D.
,
Dong
,
S.
,
Zhao
,
Y.
, and
Zhou
,
M.
,
1991
, “
The Influence of Rake of Diamond Tool on the Machined Surface of Brittle Materials With Finite Element Analysis
,”
Proceedings of 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology
,
Bremen, Germany
,
European Society of Precision Engineering
, pp.
338
341
.
46.
Ichida
,
Y.
,
1991
, “
Ductile Mode Machining of Single Crystal Silicon Using a Single Point Diamond Tool
,”
Proceedings of 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology
,
Bremen, Germany
,
European Society of Precision Engineering
, pp.
330
333
.
47.
Liu
,
X.
,
Devor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at Microscale: Assessment of Current State If the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
48.
Airao
,
J.
,
Jain
,
A.
,
Nirala
,
C. K.
, and
Unune
,
D.
,
2024
, “
Tribological Performance in Micro-Milling of Ti6Al4V Under Nanofluid-Based Minimum Quantity Lubrication
,”
Int. J. Interact. Des. Manuf.
, pp.
1
13
.
49.
Chiu
,
W. C.
,
Endres
,
W. J.
, and
Thouless
,
M. D.
,
2000
, “
An Experimental Study of Orthogonal Machining of Glass
,”
Mach. Sci. Technol.
,
4
(
2
), pp.
253
275
.
50.
Singh
,
A.
,
Solanki
,
D.
,
Sencha
,
R.
,
Singh
,
R. K.
,
Mote
,
R. G.
, and
Singh
,
R. K.
,
2020
, “
Study and Characterization of Ductile-Brittle Transition Zone in Sintered Zirconia
,”
J. Manuf. Processes
,
58
, pp.
749
762
.
51.
Kalkhoran
,
S. N. A.
,
Vahdati
,
M.
,
Zhang
,
Z.
, and
Yan
,
J.
,
2021
, “
Influence of Wax Lubrication on Cutting Performance of Single-Crystal Silicon in Ultraprecision Microgrooving
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
8
(
2
), pp.
611
624
.
52.
Yan
,
J. W.
,
Syoji
,
K.
,
Kuriyagawa
,
T.
, and
Suzuki
,
H.
,
2002
, “
Ductile Regime Turning at Large Tool Feed
,”
J Mater Process Technol.
,
121
(
2–3
), pp.
363
72
.
53.
Yan
,
J. W.
,
Syoji
,
K.
, and
Tamaki
,
J. I.
,
2004
, “
Crystallographic Effects in Micro/Nanomachining of Single-Crystal Calcium Fluoride
,”
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom.
,
22
(
1
), pp.
46
51
.
You do not currently have access to this content.