Abstract

The integration of foil bearing technology into high-speed oil-free machines has been slow in progress, in part, due to the low load-carrying capacity of the foil thrust bearing. It is crucial this issue is addressed through innovative solutions without overcomplicating the bearing design because simplicity is one of the attractive features of the foil bearing. This work presents novel thrust foil bearing with taper-flat configuration and pocket grooves on the bearing top foil as a secondary pressure boosting mechanism. Parametric study of the pocket dimensions on a rigid bearing reveals that the bearing static performance is the most sensitive to the pocket angular span. Further two-dimensional fluid–structure interaction analyses on foil thrust bearing predict a reduction of power loss by 10% with increased average film thickness. Minimum film thickness also increases when the bearing is lightly loaded but it is reduced 20% at the taper-flat transition area under high loading condition. This issue can be overcome by using stiffer bump foil; however, this is not implemented in this work due to other design constraints. Test results at 90,000 rpm and 140,000 rpm show, by adding the pocket groove pattern on the top foil, the power loss is reduced by 16% compared to the traditional taper-flat configuration.

References

1.
Licht
,
L.
,
1971
, “
Studies of Foil Journal Bearings for Brayton Cycle Turbomachinery
,”
NASA, CR-72864
.
2.
Eshel
,
A.
,
1972
, “
Thermal Effects on the Clearance and Stiffness of Foil Journal Bearings for a Brayton Cycle Turboalternator
,”
NASA, CR-2113
.
3.
Bhushan
,
B.
,
1980
, “
High Temperature Self-lubricating Coatings for Air Lubricated Foil Bearings for the Automotive Gas Turbine Engine
,”
NASA, CR-159848
.
4.
Carpino
,
M.
,
1991
, “
Analysis of Foil Bearings for High Speed Operation in Cryogenic Applications
,”
NASA, N91-28231
.
5.
Kim
,
D.
,
Creary
,
A.
, and
Chang
,
S.
,
2009
, “
Mesoscale Foil Gas Bearings for Palm-Sized Turbomachinery: Design, Manufacturing, and Modeling
,”
ASME. J. Eng. Gas Turbines Power
,
131
(
4
), p.
042502
. 10.1115/1.3077643
6.
Saleshi
,
M.
,
Heshmat
,
H.
, and
Walton
,
J.
,
2004
, “
Operation of a Mesoscopic Gas Turbine Simulator at Speeds in Excess of 700,000 Rpm on Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
170
176
. 10.1115/1.2360600
7.
Vleugels
,
P.
,
Waumans
,
T.
, and
Peirs
,
J.
,
2006
, “
High-Speed Bearings for Micro Gas Turbines: Stability Analysis of Foil Bearings
,”
IOP J. Micromech. Microeng.
,
16
(
9
), pp.
S282
S289
. 10.1088/0960-1317/16/9/S16
8.
Walton
,
J.
,
Heshmat
,
H.
, and
Tomaszewski
,
M.
,
2008
, “
Testing of a Small Turbocharger/Turbojet Sized Simulator Rotor Supported on Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
035001
. 10.1115/1.2830855
9.
Core Technology
,”
2018
, http://eng.kturbo.com/center/center01.jsp, Accessed 9 November 2018.
10.
Turbo Blowers
,”
2018
, https://www.aerzen.com/en-us/products/turbo-blowers.html, Accessed 9 November 2018.
11.
The Bladon MTG
,”
2018
, https://www.bladonmt.com/micro-turbine-genset/the-bladon-mtg, Accessed 8 November 2018.
12.
Kim
,
T.
,
Park
,
M.
, and
Lee
,
T.
,
2017
, “
Design Optimization of Gas Foil Thrust Bearings for Maximum Load Capacity
,”
ASME J. Tribol.
,
139
(
3
), p.
031705
. 10.1115/1.4034616
13.
Xu
,
F.
,
Kim
,
D.
, and
Yazdi
,
B.
,
2016
, “
Theoretical Study of Top Foil Sagging Effect on the Performance of Air Thrust Foil Bearing
,”
Turbo Expo: Power for Land, Sea, and Air, 7B
,
Seoul, South Korea, June 13–17, 2016
, p.
V07BT31A013
(10 pages). 10.1115/GT2016-56493
14.
Gad
,
A.
, and
Kaneko
,
S.
,
2014
, “
A New Structural Stiffness Model for Bump-Type Foil Bearings: Application to Generation II Gas Lubricated Foil Thrust Bearing
,”
ASME J. Tribol.
,
136
(
4
), p. 041701. 10.1115/1.4027601
15.
Gad
,
A.
, and
Kaneko
,
S.
,
2016
, “
Tailoring of the Bearing Stiffness to Enhance the Performance of Gas-Lubricated Bump-Type Foil Thrust Bearing
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
230
(
5
), pp.
541
560
. 10.1177/1350650115606482
16.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Design and Performance Prediction of Hybrid Air Foil Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042501
. 10.1115/1.4002249
17.
Yan
,
J.
,
Zhang
,
G.
, and
Liu
,
Z.
,
2018
, “
Performance of a Novel Foil Journal Bearing With Surface Micro-grooved Top Foil
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
232
(
9
), pp.
1126
1139
. 10.1177/1350650117737210
18.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2019
, “
Performance Potential of Gas Foil Thrust Bearings Enhanced With Spiral Grooves
,”
Tribol. Int.
,
131
, pp.
438
445
. 10.1016/j.triboint.2018.11.003
19.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2003
, “
A Laser Surface Textured Parallel Thrust Bearing
,”
STLE Tribol. Trans.
,
46
(
3
), pp.
397
403
. 10.1080/10402000308982643
20.
Pascovici
,
M.
,
Cicone
,
T.
, and
Fillon
,
M.
,
2009
, “
Analytical Investigation of a Partially Textured Parallel Slider
,”
SAGE J. Eng. Tribol.
,
223
(
2
), pp.
151
158
. 10.1243/13506501JET470
21.
Licht
,
L.
,
Anderson
,
W.
, and
Doroff
,
S.
,
1981
, “
Design and Performance of Compliant Thrust Bearings With Spiral-Groove Membrances on Resillient Supports
,”
ASME J. Lubr. Tech.
,
103
(
3
), pp.
373
384
. 10.1115/1.3251681
22.
Hossain
,
M.
, and
Razzaque
,
M.
,
2014
, “
Load Capacity of a Grooved Circular Step Thrust Bearing
,”
ASME J. Tribol.
,
136
(
1
), p. 011705. 10.1115/1.4025549
23.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2008
, “
Optimization of Groove Geometry for Thrust Air Bearing to Maximize Bearing Stiffness
,”
ASME J. Tribol.
,
130
(
3
), p.
031101
. 10.1115/1.2913546
24.
Fouflias
,
D.
,
Charitopoulos
,
A.
,
Papadopoulos
,
C.
, and
Kaiktsis
,
L.
,
2017
, “
Thermohydrodynamic Analysis and Tribological Optimization of a Curved Pocket Thrust Bearing
,”
Tribol. Int.
,
110
, pp.
291
306
. 10.1016/j.triboint.2017.02.012
25.
Otsuka
,
M.
,
2005
, “
Self-acting Air-Lubricated Bearing Without Oil Lubrication
,”
R&D Rev. Toyota CRDL
,
41
(
1
), pp.
24
35
.
26.
Zouzoulas
,
V.
, and
Papadopoulos
,
C.
,
2017
, “
3-D Thermodynamic Analysis of Textured, Grooved, Pocketed and Hydrophobic Pivoted-Pad Thrust Bearings
,”
Tribol. Int.
,
110
, pp.
426
440
. 10.1016/j.triboint.2016.10.001
27.
Lehn
,
A.
,
2017
, “
Air Foil Thrust Bearings: A Thermo-Elasto-Hydrodynamic Analysis
,”
Ph.D. thesis
,
Technische Universität
,
Darmstadt
.
28.
LaTray
,
N.
, and
Kim
,
D.
,
2020
, “
Design of Novel Gas Foil Thrust Bearings and Test Validation in a High-Speed Test Rig
,”
ASME J. Tribol.
,
142
(
7
), p.
071803
. 10.1115/1.4046412
29.
Khonsari
,
M.
, and
Booser
,
E.
,
2008
,
Applied Tribology: Bearing Design and Lubrication
,
John Wiley & Sons
,
Chichester, UK
, p.
143
.
30.
Cupillard
,
S.
,
Cervantes
,
M.
, and
Glavatskih
,
S.
,
2008
, “
Pressure Buildup Mechanism in a Textured Inlet of a Hydrodynamic Contact
,”
ASME J. Tribol.
,
130
(
2
), p.
021701
. 10.1115/1.2805426
31.
LaTray
,
N.
, and
Kim
,
D.
,
2018
, “
A High Speed Test Rig Capable of Running at 190,000 rpm to Characterize Gas Foil Thrust Bearings
,”
Proceedings of the ASME Turbo Expo 2018, 7B
,
Oslo, Norway
,
June 11–15
, p.
V07BT34A043
, 10.1115/GT2018-77111
You do not currently have access to this content.