Abstract
The integration of foil bearing technology into high-speed oil-free machines has been slow in progress, in part, due to the low load-carrying capacity of the foil thrust bearing. It is crucial this issue is addressed through innovative solutions without overcomplicating the bearing design because simplicity is one of the attractive features of the foil bearing. This work presents novel thrust foil bearing with taper-flat configuration and pocket grooves on the bearing top foil as a secondary pressure boosting mechanism. Parametric study of the pocket dimensions on a rigid bearing reveals that the bearing static performance is the most sensitive to the pocket angular span. Further two-dimensional fluid–structure interaction analyses on foil thrust bearing predict a reduction of power loss by 10% with increased average film thickness. Minimum film thickness also increases when the bearing is lightly loaded but it is reduced 20% at the taper-flat transition area under high loading condition. This issue can be overcome by using stiffer bump foil; however, this is not implemented in this work due to other design constraints. Test results at 90,000 rpm and 140,000 rpm show, by adding the pocket groove pattern on the top foil, the power loss is reduced by 16% compared to the traditional taper-flat configuration.