Abstract

In aerospace and power generation, components will serve in high-temperature environments. In this work, the influence of temperature on the tribological performances of Cu/Ti3AlC2 composites was investigated from 25 °C to 700 °C. Cu/Ti3AlC2 composites were fabricated by hot-pressing at 800 °C. The friction coefficients of the composites were in the range of 0.19–0.28. From 25 °C to 300 °C, the wear-rates increased with temperature from 9.05 × 10−5 mm3/Nm to 110 × 10−5 mm3/Nm, and the wear-rate reached the highest value at 300 °C. Interestingly, the wear-rates plummeted to 30.8 × 10−5 mm3/Nm at 500 °C, and 31.2 × 10−5 mm3/Nm at 700 °C. It was found that tribofilms consisting of Ti3AlC2 and Cu2O covered on the wear surfaces at 25 °C and 100 °C. Plastic flow and material transfer occurred at 300 °C. From 500 °C to 700 °C, oxidation layers formed on the wear surfaces of the composites. For simplicity, a schematic of the tribological mechanisms is proposed.

References

1.
Kumar
,
N.
,
Gautam
,
G.
,
Gautam
,
R. K.
,
Mohan
,
A.
, and
Mohan
,
S.
,
2016
, “
High-Temperature Tribology of AA5052/ZrB2 PAMCs
,”
ASME J. Tribol.
,
139
(
1
), p.
011601
. 10.1115/1.4033097
2.
Torres
,
H.
,
Rodríguez Ripoll
,
M.
, and
Prakash
,
B.
,
2017
, “
Tribological Behaviour of Self-Lubricating Materials at High Temperatures
,”
Int. Mater. Rev.
,
63
(
5
), pp.
309
340
. 10.1080/09506608.2017.1410944
3.
Zhu
,
S.
,
Cheng
,
J.
,
Qiao
,
Z.
, and
Yang
,
J.
,
2019
, “
High Temperature Solid-Lubricating Materials: A Review
,”
Tribol. Int.
,
133
, pp.
206
223
. 10.1016/j.triboint.2018.12.037
4.
He
,
D.
, and
Manory
,
R.
,
2001
, “
A Novel Electrical Contact Material With Improved Self-Lubrication for Railway Current Collectors
,”
Wear
,
249
(
7
), pp.
626
636
. 10.1016/S0043-1648(01)00700-1
5.
Rajkumar
,
K.
, and
Aravindan
,
S.
,
2013
, “
Tribological Behavior of Microwave Processed Copper–Nanographite Composites
,”
Tribol. Int.
,
57
, pp.
282
296
. 10.1016/j.triboint.2012.06.023
6.
Li
,
J.
,
Zhang
,
L.
,
Xiao
,
J.
, and
Zhou
,
K.
,
2015
, “
Sliding Wear Behavior of Copper-Based Composites Reinforced With Graphene Nanosheets and Graphite
,”
Trans. Nonferrous Met. Soc. China
,
25
(
10
), pp.
3354
3362
. 10.1016/S1003-6326(15)63970-X
7.
Kalin
,
M.
, and
Poljanec
,
D.
,
2018
, “
Influence of the Contact Parameters and Several Graphite Materials on the Tribological Behaviour of Graphite/Copper Two-Disc Electrical Contacts
,”
Tribol. Int.
,
126
, pp.
192
205
. 10.1016/j.triboint.2018.05.024
8.
Moustafa
,
S. F.
,
El-Badry
,
S. A.
,
Sanad
,
A. M.
, and
Kieback
,
B.
,
2002
, “
Friction and Wear of Copper– Graphite Composites Made With Cu-Coated and Uncoated Graphite Powders
,”
Wear
,
253
(
7–8
), pp.
699
710
. 10.1016/S0043-1648(02)00038-8
9.
Ren
,
S.
,
Meng
,
J.
,
Lu
,
J.
,
Yang
,
S.
, and
Wang
,
J.
,
2010
, “
Tribo-Physical and Tribo-Chemical Aspects of WC-Based Cermet/Ti3SiC2 Tribo-Pair at Elevated Temperatures
,”
Tribol. Int.
,
43
(
1–2
), pp.
512
517
. 10.1016/j.triboint.2009.08.007
10.
Gonzalez-Julian
,
J.
,
Llorente
,
J.
,
Bram
,
M.
,
Belmonte
,
M.
, and
Guillon
,
O.
,
2017
, “
Novel Cr2AlC MAX-Phase/SiC Fiber Composites: Synthesis, Processing and Tribological Response
,”
J. Eur. Ceram. Soc.
,
37
(
2
), pp.
467
475
. 10.1016/j.jeurceramsoc.2016.09.029
11.
El-Raghy
,
T.
,
Blau
,
P.
, and
Barsoum
,
M. W.
,
2000
, “
Effect of Grain Size on Friction and Wear Behavior of Ti3SiC2
,”
Wear
,
238
(
2
), pp.
125
130
. 10.1016/S0043-1648(99)00348-8
12.
Wang
,
S.
,
Ma
,
J.
,
Zhu
,
S.
,
Cheng
,
J.
,
Qiao
,
Z.
,
Yang
,
J.
, and
Liu
,
W.
,
2015
, “
High Temperature Tribological Properties of Ti3AlC2 Ceramic Against SiC Under Different Atmospheres
,”
Mater. Des.
,
67
, pp.
188
196
. 10.1016/j.matdes.2014.11.043
13.
Shi
,
X.
,
Wang
,
M.
,
Xu
,
Z.
,
Zhai
,
W.
, and
Zhang
,
Q.
,
2013
, “
Tribological Behavior of Ti3SiC2/(WC– 10Co) Composites Prepared by Spark Plasma Sintering
,”
Mater. Des.
,
45
, pp.
365
376
. 10.1016/j.matdes.2012.08.069
14.
Barsoum
,
M. W.
,
2000
, “
The Mn+1AXn Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates
,”
Prog. Solid State Chem.
,
28
(
1–4
), pp.
201
281
. 10.1016/S0079-6786(00)00006-6
15.
Tzenov
,
N.
, and
Barsoum
,
M.
,
2000
, “
Synthesis and Characterization of Ti3AlC2
,”
J. Am. Ceram. Soc.
,
83
(
4
), pp.
825
832
. 10.1111/j.1151-2916.2000.tb01281.x
16.
Gupta
,
S.
, and
Barsoum
,
M. W.
,
2011
, “
On the Tribology of the MAX Phases and Their Composites During Dry Sliding: A Review
,”
Wear
,
271
(
9–10
), pp.
1878
1894
. 10.1016/j.wear.2011.01.043
17.
Wang
,
X. H.
, and
Zhou
,
Y. C.
,
2010
, “
Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: A Review
,”
J. Mater. Sci. Technol.
,
26
(
5
), pp.
385
416
. 10.1016/S1005-0302(10)60064-3
18.
Wang
,
X. H.
, and
Zhou
,
Y. C.
,
2003
, “
Stability and Selective Oxidation of Aluminum in Nano-Laminate Ti3AlC2 upon Heating in Argon
,”
Chem. Mater.
,
15
(
19
), pp.
3716
3720
. 10.1021/cm030022v
19.
Barsoum
,
M. W.
,
2001
, “
Oxidation of Tin+1AlXn (n=1-3 and X=C, N) I. Model
,”
J. Electrochem. Soc.
,
148
(
8
), pp.
C544
C550
. 10.1149/1.1380255
20.
Peng
,
L.
,
2007
, “
Fabrication and Properties of Ti3AlC2 Particulates Reinforced Copper Composites
,”
Scr. Mater.
,
56
(
9
), pp.
729
732
. 10.1016/j.scriptamat.2007.01.027
21.
Zhang
,
J.
, and
Zhou
,
Y. C.
,
2007
, “
Microstructure, Mechanical, and Electrical Properties of Cu–Ti3AlC2 and In Situ Cu–TiCx Composites
,”
J. Mater. Res.
,
23
(
04
), pp.
924
932
. 10.1557/jmr.2008.0126
22.
Huang
,
X.
,
Feng
,
Y.
,
Qian
,
G.
,
Zhao
,
H.
,
Zhang
,
J.
, and
Zhang
,
X.
,
2017
, “
Physical, Mechanical, and Ablation Properties of Cu–Ti3AlC2 Composites With Various Ti3AlC2 Contents
,”
Mater. Sci. Technol.
,
34
(
6
), pp.
757
762
. 10.1080/02670836.2017.1407900
23.
Kumar Singh
,
M.
, and
Kumar Gautam
,
R.
,
2018
, “
Mechanical and Electrical Behaviour of Developed Copper Based Hybrid Composites
,”
Mater. Today: Proc.
,
5
(
2
), pp.
5692
5700
. 10.1016/j.matpr.2017.12.163
24.
Dang
,
W.
,
Ren
,
S.
,
Zhou
,
J.
,
Yu
,
Y.
, and
Wang
,
L.
,
2016
, “
The Tribological Properties of Ti3SiC2/Cu/Al/SiC Composite at Elevated Temperatures
,”
Tribol. Int.
,
104
, pp.
294
302
. 10.1016/j.triboint.2016.09.008
25.
Presser
,
V.
,
Naguib
,
M.
,
Chaput
,
L.
,
Togo
,
A.
,
Hug
,
G.
, and
Barsoum
,
M. W.
,
2012
, “
First-Order Raman Scattering of the MAX Phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2
,”
J. Raman Spectrosc.
,
43
(
1
), pp.
168
172
. 10.1002/jrs.3036
26.
Kennedy
,
F. E.
,
Lu
,
Y.
, and
Baker
,
I.
,
2015
, “
Contact Temperatures and Their Influence on Wear During Pin-on-Disk Tribotesting
,”
Tribol. Int.
,
82
, pp.
534
542
. 10.1016/j.triboint.2013.10.022
27.
Ma
,
J.
,
Hao
,
J.
,
Fu
,
L.
,
Qiao
,
Z.
,
Yang
,
J.
,
Liu
,
W.
, and
Bi
,
Q.
,
2013
, “
Intrinsic Self-Lubricity of Layered Ti3AlC2 Under Certain Vacuum Environment
,”
Wear
,
297
(
1–2
), pp.
824
828
. 10.1016/j.wear.2012.10.015
28.
Swamy
,
V.
,
2008
, “
Size-Dependent Modifications of the First-Order Raman Spectra of Nanostructured Rutile TiO2
,”
Phys. Rev. B
,
77
(
19
), pp.
195411
195414
. 10.1103/PhysRevB.77.195414
29.
Porto
,
S.
, and
Krishnan
,
R.
,
1967
, “
Raman Effect of Corundum
,”
J. Chem. Phys.
,
47
(
3
), pp.
1009
1012
. 10.1063/1.1711980
30.
Wang
,
X. H.
, and
Zhou
,
Y. C.
,
2002
, “
Intermediate-Temperature Oxidation Behavior of Ti2AlC in Air
,”
J. Mater. Res.
,
17
(
11
), pp.
2974
2981
. 10.1557/JMR.2002.0431
31.
Barsoum
,
M. W.
,
Tzenov
,
N.
,
Procopio
,
A.
,
El-Raghy
,
T.
, and
Ali
,
M.
,
2001
, “
Oxidation of Tin+1AlXn (n=1-3 and X=C, N) II. Experimental Results
,”
J. Electrochem. Soc.
,
148
(
8
), pp.
C551
C562
. 10.1149/1.1380256
32.
Yang
,
H. J.
,
Pei
,
Y. T.
,
Rao
,
J. C.
,
Hosson
,
J.
,
Li
,
S. B.
, and
Song
,
G. M.
,
2011
, “
High Temperature Healing of Ti2AlC: On the Origin of Inhomogeneous Oxide Scale
,”
Scr. Mater.
,
65
(
2
), pp.
135
138
. 10.1016/j.scriptamat.2011.03.031
33.
Gupta
,
S.
,
Filimonov
,
D.
,
Palanisamy
,
T.
, and
Barsoum
,
M. W.
,
2008
, “
Tribological Behavior of Select MAX Phases Against Al2O3 at Elevated Temperatures
,”
Wear
,
265
(
3-4
), pp.
560
565
. 10.1016/j.wear.2007.11.018
34.
Gupta
,
S.
,
Filimonov
,
D.
,
Palanisamy
,
T.
,
El-Raghy
,
T.
, and
Barsoum
,
M. W.
,
2007
, “
Ta2AlC and Cr2AlC Ag-Based Composites—New Solid Lubricant Materials for Use Over a Wide Temperature Range Against Ni-Based Superalloys and Alumina
,”
Wear
,
262
(
11–12
), pp.
1479
1489
. 10.1016/j.wear.2007.01.028
35.
Kong
,
L.
,
Bi
,
Q.
,
Zhu
,
S.
,
Qiao
,
Z.
,
Yang
,
J.
, and
Liu
,
W.
,
2014
, “
Effect of CuO on Self-Lubricating Properties of ZrO2(Y2O3)–Mo Composites at High Temperatures
,”
J. Eur. Ceram. Soc.
,
34
(
5
), pp.
1289
1296
. 10.1016/j.jeurceramsoc.2013.11.027
You do not currently have access to this content.