Abstract

Bearings are vital parts of many mechanical equipment, the vibration signal analysis of bearings with local defects is important in guiding the fault diagnosis. In this paper, a dynamic analysis method is proposed to investigate the vibration response of the deep groove ball bearings (DGBBs) with local defect using a new displacement excitation function based on the Hertz contact theory and Newton's second law. The DGBB is modeled as a two degrees-of-freedom system, and an additional friction force in the defect zone, the influence of centrifugal force, the gravity of rolling elements, and lubrication traction/slip force between rolling elements and raceway are considered. And this model is used to study the dynamic signals of DGBB under different fault sizes and rotation speeds. Results indicate that the simulation signal has many continuous impacts and change over the time which is closer to the actual situation compared with the one-shot impulse function such as rectangular or half-sine or piecewise function when the rolling elements passed through the defect zone. Finally, the validity of the proposed model is verified by experiments. The simulated and experimental results indicate that the proposed model would achieve a more appropriate and accurate dynamic simulation.

References

1.
Cui
,
L.
,
Zhang
,
Y.
,
Zhang
,
F.
,
Zhang
,
J.
, and
Lee
,
S.
,
2016
, “
Vibration Response Mechanism of Faulty Outer Race Rolling Element Bearings for Quantitative Analysis
,”
J. Sound Vib.
,
364
(
3
), pp.
67
76
. 10.1016/j.jsv.2015.10.015
2.
Qin
,
Y.
,
Zou
,
J.
,
Tang
,
B.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Transient Feature Extraction by the Improved Orthogonal Matching Pursuit and K-SVD Algorithm With Adaptive Transient Dictionary
,”
IEEE Trans. Ind. Inform.
,
16
(
1
), pp.
215
227
. 10.1109/TII.2019.2909305
3.
Wang
,
X.
,
Qin
,
Y.
,
Wang
,
Y.
,
Xiang
,
S.
, and
Chen
,
H.
,
2019
, “
ReLTanh: An Activation Function With Vanishing Gradient Resistance for SAE-Based DNNs and Its Application to Rotating Machinery Fault Diagnosis
,”
Neurocomputing
,
363
, pp.
88
98
. 10.1016/j.neucom.2019.07.017
4.
Chen
,
Z.
, and
Li
,
W.
,
2017
, “
Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network
,”
IEEE Trans. Instrum. Meas.
,
66
(
7
), pp.
1
10
. 10.1109/TIM.2017.2706838
5.
Qin
,
Y.
,
Chen
,
D.
,
Xiang
,
S.
, and
Zhu
,
C.
,
2020
, “
Gated Dual Attention Unit Neural Networks for Remaining Useful Life Prediction of Rolling Bearings
,”
IEEE Trans. Ind. Inform.
, p.
1
. 10.1109/tii.2020.2999442
6.
Wang
,
Y. X.
,
Yang
,
L.
,
Xiang
,
J. W.
,
Yang
,
J. W.
, and
He
,
S. L.
,
2017
, “
A Hybrid Approach to Fault Diagnosis of Roller Bearings Under Variable Speed Conditions
,”
Meas. Sci. Technol.
,
28
(
12
), p.
11
. 10.1088/1361-6501/aa9460
7.
Song
,
L.
,
Wang
,
H.
, and
Peng
,
C.
,
2018
, “
Vibration-Based Intelligent Fault Diagnosis for Roller Bearings in Low-Speed Rotating Machinery
,”
IEEE Trans. Instrum. Meas.
,
99
, pp.
1
13
. 10.1109/tim.2018.2806984
8.
Qin
,
Y.
,
2018
, “
A New Family of Model-Based Impulsive Wavelets and Their Sparse Representation for Rolling Bearing Fault Diagnosis
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2716
2726
. 10.1109/TIE.2017.2736510
9.
Jones
,
A. B.
,
1960
, “
A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions
,”
ASME J. Basic Eng.
,
82
(
2
), pp.
309
320
. 10.1115/1.3662587
10.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Advanced Concepts of Bearing Technology: Rolling Bearing Analysis
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
11.
Cao
,
H.
,
Niu
,
L.
, and
He
,
Z.
,
2012
, “
Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System With a Bearing Defect
,”
Sensors
,
12
(
7
), pp.
8732
8754
. 10.3390/s120708732
12.
Sunnersjö
,
C. S.
,
1978
, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
,
58
(
3
), pp.
363
373
. 10.1016/S0022-460X(78)80044-3
13.
Feng
,
N. S.
,
Hahn
,
E. J.
, and
Randall
,
R. B.
,
2002
, “
Using Transient Analysis Software to Simulate Vibration Signals Due to Rolling Element Bearing Defects
,”
Applied Mechanics—Progress and Applications—The Third Australasian Congress on Applied Mechanics
,
Sydney, Australia
,
Feb. 20–22
, pp.
689
694
.
14.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2008
, “
Simulating Gear and Bearing Interactions in the Presence of Faults: Part I. The Combined Gear Bearing Dynamic Model and the Simulation of Localised Bearing Faults
,”
Mech. Syst. Signal Process.
,
22
(
8
), pp.
1924
1951
. 10.1016/j.ymssp.2007.12.001
15.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
305
311
. 10.1115/1.3453360
16.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2015
, “
A Systematic Study of Ball Passing Frequencies Based on Dynamic Modeling of Rolling Ball Bearings With Localized Surface Defects
,”
J. Sound Vib.
,
357
, pp.
207
232
. 10.1016/j.jsv.2015.08.002
17.
Bai
,
C.
, and
Qingyu
,
X.
,
2006
, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vib.
,
294
(
1
), pp.
23
48
. 10.1016/j.jsv.2005.10.005
18.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for the Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
. 10.1016/0022-460X(84)90595-9
19.
Arslan
,
H.
, and
Aktüerk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(
4
), p.
041101
. 10.1115/1.2958070
20.
Tandon
,
N.
, and
Choudhury
,
A.
,
2000
, “
A Theoretical Model to Predict the Vibration Response of Rolling Bearings in a Rotor Bearing System to Distributed Defects Under Radial Load
,”
ASME J. Tribol.
,
122
(
3
), pp.
609
615
. 10.1115/1.555409
21.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to a Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
. 10.1006/jsvi.1997.1031
22.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
. 10.1115/1.4002333
23.
Liu
,
J.
,
Shao
,
Y.
, and
Lim
,
T. C.
,
2012
, “
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
Mech. Mach. Theory
,
56
(
1
), pp.
156
169
. 10.1016/j.mechmachtheory.2012.05.008
24.
Liu
,
J.
, and
Yimin
,
S.
,
2015
, “
A New Dynamic Model for Vibration Analysis of a Ball Bearing Due to a Localized Surface Defect Considering Edge Topographies
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1329
1351
. 10.1007/s11071-014-1745-y
25.
Kiral
,
Z.
, and
Karagulle
,
H.
,
2003
, “
Simulation and Analysis of Vibration Signals Generated by Rolling Element Bearing With Defects
,”
Tribol. Int.
,
36
(
9
), pp.
667
678
. 10.1016/S0301-679X(03)00010-0
26.
Liu
,
J.
,
Shi
,
Z.
, and
Shao
,
Y.
,
2017
, “
A Numerical Investigation of the Plastic Deformation at the Spall Edge for a Roller Bearing
,”
Eng. Failure Anal.
,
80
, pp.
263
271
. 10.1016/j.engfailanal.2017.06.019
27.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part K: J. Multi Body Dyn.
,
217
(
3
), pp.
201
211
. 10.1243/14644190360713551
28.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects. Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng., Part K: J. Multi Body Dyn.
,
217
(
3
), pp.
213
223
. 10.1243/14644190360713560
29.
Kogan
,
G.
,
Bortman
,
J.
, and
Klein
,
R.
,
2017
, “
A New Model for Spall-Rolling-Element Interaction
,”
Nonlinear Dyn.
,
87
(
1
), pp.
219
236
. 10.1007/s11071-016-3037-1
30.
Qin
,
Y.
,
Cao
,
F.
,
Wang
,
Y.
,
Chen
,
W.
, and
Chen
,
H.
,
2019
, “
Dynamics Modelling for Deep Groove Ball Bearings With Local Faults Based on Coupled and Segmented Displacement Excitation
,”
J. Sound Vib.
,
447
, pp.
1
19
. 10.1016/j.jsv.2019.01.048
31.
Behzad
,
M.
,
Bastami
,
A. R.
, and
Mba
,
D.
,
2011
, “
A New Model for Estimating Vibrations Generated in the Defective Rolling Element Bearings
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041011
. 10.1115/1.4003595
32.
Behzad
,
M.
, and
Bastami
,
A. R.
,
2011
, “
A New Method for Detection of Rolling Bearing Faults Based on the Local Curve Roughness Approach
,”
Pol. Marit. Res.
,
18
(
2
), pp.
44
50
. 10.2478/v10012-011-0011-1
33.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Essential Concepts of Bearing Technology
,
CRC Press
,
Boca Raton, FL
.
34.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
. 10.1115/1.4027334
35.
Khanam
,
S.
,
Tandon
,
N.
, and
Dutt
,
J. K.
,
2016
, “
Multi-Event Excitation Force Model for Inner Race Defect in a Rolling Element Bearing
,”
ASME J. Tribol.
,
138
(
1
), p.
011106
. 10.1115/1.4031394
You do not currently have access to this content.