The objective of this work is to study the tribological properties of natural fiber based composites using nanotechnology. The naturally available banana plant fibers were treated with nanoclay particles, and these treated fibers were then reinforced in an epoxy polymer to form composites. The friction and wear properties of nanoclay-treated banana fiber (NC-BF) reinforced composites were compared with untreated banana fiber (UT-BF) reinforced composites. Short NC-BF- and UT-BF-reinforced composites with fiber concentration ranging from 20 wt % to 60 wt % were prepared by the vacuum resin infusion processing method. The result indicates that the NC-BF-reinforced composites have shown improved friction and wear properties. Microscopy examination revealed that NC-BF-reinforced composites were able to form a transfer layer between the wear test specimen wear surface and counter face, resulting in improved wear properties. The nanoclay particles also induce increased hardness and friction to the composites and improve braking properties.

References

1.
Gu
,
D.
,
Jue
,
J.
,
Dai
,
D.
,
Lin
,
K.
, and
Chen
,
W.
,
2017
, “
Effects of Dry Sliding Conditions on Wear Properties of Al-Matrix Composites Produced by Selective Laser Melting Additive Manufacturing
,”
ASME J. Tribol.
,
140
(
2
),
021605
.
2.
Gbadeyan
,
O. J.
,
Kanny
,
K.
, and
Turup Pandurangan
,
M.
,
2017
, “
Tribological, Mechanical, and Microstructural of Multiwalled Carbon Nanotubes/Short Carbon Fiber Epoxy Composites
,”
ASME J. Tribol.
,
140
(
2
),
022002
.
3.
Montenegro
,
D. M.
,
Bernasconi
,
F.
,
Zogg
,
M.
,
Gössi
,
M.
,
Libanori
,
R.
,
Wegener
,
K.
, and
Studart
,
A. R.
,
2017
, “
Mode I Transverse Intralaminar Fracture in Glass Fiber-Reinforced Polymers With Ductile Matrices
,”
Compos. Struct.
,
165
, pp.
65
73
.
4.
Zhao
,
F.
,
Li
,
G.
,
Österle
,
W.
,
Häusler
,
I.
,
Zhang
,
G.
,
Wang
,
T.
, and
Wang
,
Q.
,
2016
, “
Tribological Investigations of Glass Fiber Reinforced Epoxy Composites Under Oil Lubrication Conditions
,”
Tribol. Int.
,
103
, pp.
208
217
.
5.
Pezeshkian
,
M.
,
Ebrahimzadeh
,
I.
, and
Gharavi
,
F.
,
2017
, “
Fabrication of Cu Surface Composite Reinforced by Ni Particles Via Friction Stir Processing: Microstructure and Tribology Behaviors
,”
ASME J. Tribol.
,
140
(
1
),
011607
.
6.
Xiao-Ming
,
H.
,
Fei
,
G.
,
Lin-Lin
,
S.
,
Rong
,
F.
, and
Zang
,
E.
,
2017
, “
Effect of Graphite Content on the Tribological Performance of Copper-Matrix Composites Under Different Friction Speeds
,”
ASME J. Tribol.
,
139
(
4
),
041601
.
7.
Ramesh
,
M.
,
2016
, “
Kenaf. Hibiscus Cannabinus L. Fibre Based Bio-Materials: A Review on Processing and Properties
,”
Prog. Mater. Sci.
,
78–79
, pp.
1
92
.
8.
Väisänen
,
T.
,
Das
,
O.
, and
Tomppo
,
L.
,
2017
, “
A Review on New Bio-Based Constituents for Natural Fiber-Polymer Composites
,”
J. Clean. Prod.
,
149
, pp.
582
596
.
9.
George
,
M.
, and
Bressler
,
D. C.
,
2017
, “
Comparative Evaluation of the Environmental Impact of Chemical Methods Used to Enhance Natural Fibres for Composite Applications and Glass Fibre Based Composites
,”
J. Clean. Prod.
,
149
, pp.
491
501
.
10.
Faruk
,
O.
,
Bledzki
,
A. K.
,
Fink
,
H. P.
, and
Sain
,
M.
,
2012
, “
Biocomposites Reinforced With Natural Fibers: 2000–2010
,”
Prog. Polym. Sci.
,
37
, pp.
1552
1596
.
11.
Elsabbagh
,
A.
,
Steuernagel
,
L.
, and
Ring
,
J.
,
2017
, “
Natural Fibre/PA6 Composites With Flame Retardance Properties: Extrusion and Characterisation
,”
Compos. Part B: Eng.
,
108
, pp.
325
333
.
12.
Rohit
,
R.
, and
Dixit
,
S.
,
2016
, “
A Review – Future Aspect of Natural Fiber Reinforced Composite
,”
Polym. Renew. Resour.
,
7
, pp.
43
60
.
13.
Xin
,
X.
,
Xu
,
C. G.
, and
Qing
,
L. F.
,
2007
, “
Friction Properties of Sisal Fibre Reinforced Resin Brake Composites
,”
Wear
,
262
, pp.
736
741
.
14.
Correa
,
C. E.
,
Betancourt
,
S.
,
Vázquez
,
A.
, and
Gañan
,
P.
,
2017
, “
Wear Performance of Vinyl Ester Reinforced with Musaceae Fiber Bundles Sliding Against Different Metallic Surfaces
,”
Tribol. Int.
,
109
, pp.
447
459
.
15.
Uzun
,
M.
,
Kanchi Govarthanam
,
K.
,
Rajendran
,
S.
, and
Sancak
,
E.
,
2014
, “
Interaction of a Non-Aqueous Solvent System on Bamboo, Cotton, Polyester and Their Blends: the Effect on Abrasive Wear Resistance
,”
Wear
,
322–323
, pp.
10
16
.
16.
Mohanty
,
J. R.
,
Das
,
S. N.
, and
Das
,
H. C.
,
2015
, “
Tribological Behavior of Acrylic Acid–Modified Date Palm Leaf–Reinforced Polyvinyl Alcohol Composite
,”
Tribol. Trans.
,
57
(
3
), pp.
546
552
.
17.
Cai
,
P.
,
Li
,
Z.
,
Wang
,
T.
, and
Wang
,
Q.
,
2015
, “
Effect of Aspect Ratios of Aramid Fiber on Mechanical and Tribological Behaviors of Friction Materials
,”
Tribol. Int.
,
92
, pp.
109
116
.
18.
Correa
,
C. E.
,
Betancourt
,
S.
,
Vázquez
,
A.
, and
Gañan
,
P.
,
2015
, “
Wear Resistance and Friction Behavior of Thermoset Matrix Reinforced With Musaceae Fiber Bundles
,”
Tribol. Int.
,
87
, pp.
57
64
.
19.
Nirmal
,
U.
,
Hashim
,
J.
, and
Low
,
K. O.
,
2012
, “
Adhesive Wear and Frictional Performance of Bamboo Fibres Reinforced Epoxy Composite
,”
Tribol. Int.
,
47
, pp.
122
133
.
20.
Yousif
,
B. F.
,
Alvin
,
D.
, and
Yusaf
,
T. F.
,
2009
, “
Adhesive Wear and Frictional Behaviour of Multilayered Polyester Composite Based on Betelnut Fiber Mats Under Wet Contact Conditions
,”
Surface Rev. Lett.
,
16
, pp.
407
14
.
21.
Kotal
,
M.
, and
Bhowmick
,
A. K.
,
2015
, “
Polymer Nanocomposites From Modified Clays: Recent Advances and Challenges
,”
Prog. Polym. Sci.
,
51
, pp.
127
187
.
22.
Dayma
,
N.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
,
2011
, “
Structural Correlations to Sliding Wear Performance of PA-6/PP-g-MA/Nanoclay Ternary Nanocomposites
,”
Wear
,
271
, pp.
827
836
.
23.
Sinha
,
S. K.
,
Song
,
T.
,
Wan
,
X.
, and
Tong
,
Y.
,
2009
, “
Scratch and Normal Hardness Characteristics of Polyamide 6/Nano-Clay Composite
,”
Wear
,
266
, pp.
814
821
.
24.
Turup Pandurangan
,
M.
, and
Kanny
,
K.
,
2012
, “
Chemical Treatment of Sisal Fiber Using Alkali and Clay Method
,”
Compos. Part A: Appl. Sci. Manuf.
,
43
, pp.
1989
1998
.
25.
Kanny
,
K.
, and
Turup Pandurangan
,
M.
,
2013
, “
Surface Treatment of Sisal Fiber Composites for Improved Moisture and Fatigue Properties
,”
Compos. Interfaces
,
20
, pp.
783
97
.
26.
Turup Pandurangan
,
M.
, and
Kanny
,
K.
,
2016
, “
Nanoclay Infused Banana Fiber and its Effects on Mechanical and Thermal Properties of Composites
,”
J. Compos. Mater.
,
50
(
9
), pp.
1261
1276
.
27.
Turup Pandurangan
,
M.
, and
Kanny
,
K.
,
2017
, “
Mechanical and Thermal Properties of Nanoclay Treated Banana Fibers
,”
J. Nat. Fibers
,
14
(
5
), pp.
718
726
.
28.
Turup Pandurangan
,
M.
, and
Kanny
,
K.
,
2018
, “
Mechanical Properties and Failure Analysis of Short Kenaf Fiber Reinforced Composites Processed by Resin Casting and Vacuum Infusion Methods
,”
Polym. Polym. Compos.
,
26
(
2
), pp.
1
16
.
29.
Wang
,
H.
,
Xian
,
G.
, and
Li
,
H.
,
2015
, “
Grafting of Nano-TiO2 Onto Flax Fibers and the Enhancement of the Mechanical Properties of the Flax Fiber and Flax Fiber/Epoxy Composite
,”
Comp. Part A: Appl. Sci. Manuf.
,
76
, pp.
172
180
.
30.
Xia
,
C.
,
Shi
,
S. Q.
, and
Cai
,
L.
,
2015
, “
Vacuum-Assisted Resin Infusion (VARI) and Hot Pressing for CaCO3 Nanoparticle Treated Kenaf Fiber Reinforced Composites
,”
Compos. Part B: Eng.
,
78
, pp.
138
143
.
31.
Xia
,
C.
,
Zhang
,
S.
,
Shi
,
S. Q.
,
Cai
,
L.
, and
Huang
,
J.
,
2016
, “
Property Enchancement of Kenaf Fiber Reinforced Composites by in Situ Aluminium Hydroxide Impregnation
,”
Ind. Crops Prod.
,
79
, pp.
131
136
.
32.
Foruzanmehr
,
M. R.
,
Vuillaume
,
P. Y.
,
Robert
,
M.
, and
Elkoun
,
S.
,
2015
, “
The Effect of Grafting a Nano-TiO2 Thin Film on Physical and Mechanical Properties of Cellulosic Natural Fibers
,”
Mater. Design
,
85
, pp.
671
678
.
33.
Turup Pandurangan
,
M.
, and
Kanny
,
K.
,
2017
, “
Tribological Studies of Nanoclay Filled Epoxy Hybrid Laminates
,”
Tribol. Trans.
,
60
, pp.
681
692
.
You do not currently have access to this content.