Understanding of the wear behaviors between mechanical components is a significant task in engineering design. Finite element (FE) simulation may offer valuable wear information. However, longer computational time, poor data precision, and possible divergence of results are unavoidable in repetitive procedures, especially for large FE structures. To address these issues, the current method proposes a hypothesis that the strain energy is completely transferred through the contact regions of components; further that only variables on the contact surface are involved in the solution procedure. Our qualitative comparison demonstrates that the formulations in the current study are valid, offering significant implications for further application.

References

1.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
2.
Marshek
,
K. M.
, and
Chen
,
H. H.
,
1989
, “
Discretization Pressure-Wear Theory for Bodies in Sliding Contact
,”
ASME J. Tribol.
,
111
(
1
), pp.
95
101
.
3.
Kennedy
,
F. E.
, and
Ling
,
F. F.
,
1974
, “
A Thermal, Thermoelastic and Wear Simulation of a High-Energy Sliding Contact Problem
,”
ASME J. Lubr. Technol.
,
96
(
3
), pp.
497
505
.
4.
Day
,
A. J.
,
1988
, “
An Analysis of Speed, Temperature, and Performance Characteristics of Automotive Drum Brakes
,”
ASME J. Tribol.
,
110
(
2
), pp.
298
303
.
5.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
,
1996
, “
A Sliding-Distance-Coupled Finite Element Formulation for Polyethylene Wear in Total Hip Arthroplasty
,”
J. Biomech.
,
29
(
5
), pp.
687
692
.
6.
Blanchet
,
T. A.
,
1997
, “
The Interaction of Wear and Dynamics of a Simple Mechanism
,”
ASME J. Tribol.
,
119
(
3
), pp.
597
599
.
7.
Sawyer
,
W. G.
,
2001
, “
Wear Predictions for a Simple-Cam Including the Coupled Evolution of Wear and Load
,”
Lubr. Eng.
,
57
(
9
), pp.
31
36
.
8.
Shen
,
X. J.
,
Cao
,
L.
, and
Li
,
R. Y.
,
2010
, “
Numerical Simulation of Sliding Wear Based on Archard Model
,”
2010 International Conference on Mechanic Automation and Control Engineering
, Wuhan, China, June 26–28, pp.
325
329
.
9.
Martinez
,
F. J.
,
Canales
,
M.
,
Izquierdo
,
S.
,
Jimenez
,
M. A.
, and
Martinez
,
M. A.
,
2012
, “
Finite Element Implementation and Validation of Wear Modelling in Sliding Polymer–Metal Contacts
,”
Wear
,
284–285
, pp.
52
64
.
10.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2012
, “
Finite Element Modeling and Experimental Validation of Fretting Wear Scars in Thin Steel Wires
,”
Wear
,
289
, pp.
26
38
.
11.
Cruzado
,
A.
,
Leen
,
S. B.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2013
, “
Finite Element Simulation of Fretting Wear and Fatigue in Thin Steel Wires
,”
Int. J. Fatigue
,
55
, pp.
7
21
.
12.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2014
, “
Finite Element Modelling of Fretting Wear Scars in the Thin Steel Wires: Application in Crossed Cylinder Arrangements
,”
Wear
,
318
, pp.
98
105
.
13.
Põdra
,
P.
, and
Andersson
,
S.
,
1999
, “
Simulating Sliding Wear With Finite Element Method
,”
Tribol. Int.
,
32
(
2
), pp.
71
81
.
14.
Põdra
,
P.
, and
Andersson
,
S.
,
1999
, “
Finite Element Analysis Wear Simulation of a Conical Spinning Contact Considering Surface Topography
,”
Wear
,
224
(
1
), pp.
13
21
.
15.
Öqvist
,
M.
,
2001
, “
Numerical Simulations of Mild Wear Using Updated Geometry With Different Step Size Approaches
,”
Wear
,
249
, pp.
6
11
.
16.
Dickrell
,
D. J.
,
Dooner
,
D. B.
, and
Sawyer
,
W. G.
,
2003
, “
The Evolution of Geometry for a Wearing Circular Cam: Analytical and Computer Simulation With Comparison to Experiment
,”
ASME J. Tribol.
,
125
(
1
), pp.
187
192
.
17.
Wu
,
J. S.-S.
,
Hung
,
J.-P.
,
Shu
,
C.-S.
, and
Chen
,
J.-H.
,
2003
, “
The Computer Simulation of Wear Behavior Appearing in Total Hip Prosthesis
,”
Comput. Methods Programs Biomed.
,
70
(
1
), pp.
81
91
.
18.
McColl
, I
. R.
,
Ding
,
J.
, and
Leen
,
S. B.
,
2004
, “
Finite Element Simulation and Experimental Validation of Fretting Wear
,”
Wear
,
256
, pp.
1114
1127
.
19.
Kim
,
N. H.
,
Won
,
D.
,
Burris
,
D.
,
Holtkamp
,
B.
,
Gessel
,
G. R.
,
Swanson
,
P.
, and
Sawyer
,
W. G.
,
2005
, “
Finite Element Analysis and Experiments of Metal/Metal Wear in Oscillatory Contacts
,”
Wear
,
258
, pp.
1787
1793
.
20.
Mary
,
C.
, and
Fouvry
,
S.
,
2007
, “
Numerical Prediction of Fretting Contact Durability Using Energy Wear Approach: Optimisation of Finite-Element Model
,”
Wear
,
263
(
1–6
), pp.
444
450
.
21.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2006
, “
Wear Simulation Using an Incremental Sliding Boundary Element Method
,”
Wear
,
260
, pp.
1119
1128
.
22.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2007
, “
A Boundary Element Formulation for Three-Dimensional Sliding Wear Simulation
,”
Wear
,
262
, pp.
672
683
.
23.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2007
, “
Total Hip Arthroplasty Wear Simulation Using the Boundary Element Method
,”
J. Biomech.
,
40
(
2
), pp.
378
389
.
24.
Rodriguez-Tembleque
,
L.
,
Abascal
,
R.
, and
Aliabadi
,
M. H.
,
2010
, “
A Boundary Element Formulation for Wear Modeling on 3D Contact and Rolling-Contact Problems
,”
Int. J. Solids Struct.
,
47
, pp.
2600
2612
.
25.
Sfantos
,
G. K.
, and
Aliabadi
,
M. H.
,
2006
, “
Application of BEM and Optimization Technique to Wear Problems
,”
Int. J. Solids Struct.
,
43
, pp.
3626
3642
.
26.
Yu
,
G. Y.
,
2002
, “
Symmetric Collocation BEM/FEM Coupling Procedure for 2-D Dynamic Structural–Acoustic Interaction Problems
,”
Comput. Mech.
,
29
(
3
), pp.
191
198
.
27.
Mushtaq
,
M.
,
Shah
,
N. A.
, and
Muhammad
,
G.
,
2010
, “
Advantages and Disadvantages of Boundary Element Methods for Compressible Fluid Flow Problems
,”
J. Am. Sci.
,
6
(
1
), pp.
162
165
.
28.
Mukras
,
S.
,
Kim
,
N. H.
,
Sawyer
,
W. G.
,
Jackson
,
D. B.
, and
Bergquist
,
L. W.
,
2009
, “
Numerical Integration Schemes and Parallel Computation for Wear Prediction Using Finite Element Method
,”
Wear
,
266
(
7–8
), pp.
822
831
.
29.
Bae
,
J. W.
,
Lee
,
C. Y.
, and
Chai
,
Y. S.
,
2009
, “
Three Dimensional Fretting Wear Analysis by Finite Element Substructure Method
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
63
69
.
30.
Farhat
,
C.
,
Lacour
,
C.
, and
Rixen
,
D.
,
1998
, “
Incorporation of Linear Multipoint Constraints in Substructure Based Iterative Solvers Part 1: A Numerically Scalable Algorithm
,”
Int. J. Numer. Methods Eng.
,
43
(
6
), pp.
997
1016
.
31.
Park
,
K. C.
,
Felippa
,
C. A.
, and
Gumaste
,
U. A.
,
2000
, “
A Localized Version of the Method of Lagrange Multipliers and Its Applications
,”
Comput. Mech.
,
24
(
6
), pp.
476
490
.
32.
Rebel
,
G.
,
Park
,
K. C.
, and
Felippa
,
C. A.
,
2002
, “
A Contact Formulation Based on Localized Lagrange Multipliers: Formulation and Application to Two Dimensional Problems
,”
Int. J. Numer. Methods Eng.
,
54
(
2
), pp.
263
297
.
33.
González
,
J. A.
,
Park
,
K. C.
, and
Felippa
,
C. A.
,
2006
, “
Partitioned Formulation of Frictional Contact Problems Using Localized Lagrange Multipliers
,”
Commun. Numer. Methods Eng.
,
22
(4), pp.
319
333
.
34.
Oysu
,
C.
,
2007
, “
Finite Element and Boundary Element Contact Stress Analysis With Remeshing Technique
,”
Appl. Math. Modell.
,
31
(
12
), pp.
2744
2753
.
35.
Cho
,
M.
, and
Kim
,
W. B.
,
2002
, “
A Coupled Finite Element Analysis of Independently Modeled Substructures by Penalty Frame Method
,”
KSME Int. J.
,
16
(10), pp.
1201
1210
.
36.
Holm
,
R.
,
1946
,
Electric Contacts
,
Gebers
,
Stockholm, Sweden
.
37.
Rabinowicz
,
E.
,
1984
, “
The Least Wear
,”
Wear
,
100
, pp.
533
541
.
38.
Imregun
,
M.
, and
Ewins
,
D. J.
,
1994
, “
Mesh Density Effects on Finite Element Model Updating
,” IMAC 12, Honolulu, HI, pp.
1372
1382
.
39.
Liu
,
W. B.
,
Gheni
,
M.
, and
Yu
,
L.
,
2011
, “
Effect of Mesh Size of Finite Element Analysis in Modal Analysis for Periodic Symmetric Struts Support
,”
Key Eng. Mater.
,
462–463
, pp.
1008
1012
.
40.
Stemp
,
M.
,
Mischler
,
S.
, and
Landolt
,
D.
,
2003
, “
The Effect of Contact Configuration on the Tribocorrosion of Stainless Steel in Reciprocating Sliding Under Potentiostatic Control
,”
Corros. Sci.
,
45
(
3
), pp.
625
640
.
41.
Andersson
,
J.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2011
, “
Numerical Simulation of a Wear Experiment
,”
Wear
,
271
(
11–12
), pp.
2947
2952
.
42.
Arumugam
,
S.
, and
Sriram
,
G.
,
2013
, “
Synthesis and Characterisation of Rapeseed Oil Bio-Lubricant—Its Effect on Wear and Frictional Behaviour of Piston Ring-Cylinder Liner Combination
,”
Proc. IMechE Part J: J. Eng. Tribol.
,
227
(
1
), pp.
3
15
.
43.
Mattei
,
L.
,
Di Puccio
,
F.
,
Piccigallo
,
B.
, and
Ciulli
,
E.
,
2011
, “
Lubrication and Wear Modelling of Artificial Hip Joints: A Review
,”
Tribol. Int.
,
44
(
5
), pp.
532
549
.
44.
Patil
,
S.
,
Bergula
,
A.
,
Chen
,
P. C.
,
Colwell
,
C. W.
, Jr.
, and
D'Lima
,
D. D.
,
2003
, “
Polyethylene Wear and Acetabular Component Orientation
,”
J. Bone Jt. Surg. Am.
,
85-A
(
Suppl 4
), pp.
56
63
.
45.
Queiroz
,
R. D.
,
Oliveira
,
A. L. L.
,
Trigo
,
F. C.
, and
Lopes
,
J. A.
,
2013
, “
A Finite Element Method Approach to Compare the Wear of Acetabular Cups in Polyethylene According to Their Lateral Tilt in Relation to the Coronal Plane
,”
Wear
,
298–299
, pp.
8
13
.
46.
Wu
,
J. S.-S.
,
Hsu
,
S. L.
, and
Chen
,
J. H.
,
2010
, “
Wear Patterns of, and Wear Volume Formulae for, Hemispherical Acetabular Cup Liners
,”
Wear
,
268
, pp.
481
487
.
47.
Livermore
,
J.
,
Ilstrup
,
D.
, and
Morrey
,
B.
,
1990
, “
Effect of Femoral Head Size on Wear of the Polyethylene Acetabular Component
,”
J. Bone Jt. Surg. Am.
,
72
(
4
), pp.
518
528
.
48.
Eggli
,
S.
,
z'Brun
,
S.
,
Gerber
,
C.
, and
Ganz
,
R.
,
2002
, “
Comparison of Polyethylene Wear With Femoral Heads of 22 mm and 32 mm. A Prospective, Randomised Study
,”
J. Bone Jt. Surg. Br.
,
84
(
3
), pp.
447
451
.
49.
Shaju
,
K. A.
,
Hasan
,
S. T.
,
D'Souza
,
L. G.
,
McMahon
,
B.
, and
Masterson
,
E. L.
,
2005
, “
The 22-mm versus the 32-mm Femoral Head in Cemented Primary Hip Arthroplasty Long-Term Clinical and Radiological Follow-Up Study
,”
J. Arthroplasty
,
20
(
7
), pp.
903
908
.
50.
Kabo
,
J. M.
,
Gebhard
,
J. S.
,
Loren
,
G.
, and
Amstutz
,
H. C.
,
1993
, “
In Vivo Wear of Polyethylene Acetabular Components
,”
J. Bone Jt. Surg. Br.
,
75
(
2
), pp.
254
258
.
You do not currently have access to this content.