The objectives of this investigation were to develop a coupled dynamic model for turbocharger ball bearing rotor systems, correlate the simulated shaft motion with experimental results, and analyze the corresponding bearing dynamics. A high-speed turbocharger test rig was designed and developed in order to measure the dynamic response of a rotor under various operating conditions. Displacement sensors were used to record shaft motion over a range of operating speeds. To achieve the objectives of the analytical investigation, a discrete element angular contact ball bearing cartridge model was coupled with an explicit finite element shaft to simulate the dynamics of the turbocharger test rig. The bearing cartridge consists of a common outer ring, a pair of split inner races, and a row of balls on each end of the cartridge. The dynamic cartridge model utilizes the discrete element method in which each of the bearing components (i.e., races, balls, and cages) has six degrees-of-freedom. The rotor is modeled using the explicit finite element method. The cartridge and rotor models are coupled such that the motion of the flexible rotor is transmitted to the inner races of the cartridge with the corresponding reaction forces and moments from the bearings being applied to the rotor. The coupled rotor–cartridge model was used to investigate the shaft motion and bearing dynamics as the system traverses critical speeds. A comparison of the analytical and experimental shaft motion results resulted in minimal correlation but showed similarity through the critical speeds. The cartridge model allowed for thorough investigation of bearing component dynamics. Effects of ball material properties were found to have a significant impact on turbocharger rotor and bearing dynamics.

References

1.
Rezvani
,
M. A.
, and
Hahn
,
E. J.
,
2000
, “
Floating Ring Squeeze Film Damper: Theoretical Analysis
,”
Tribol. Int.
,
33
(
3–4
), pp.
249
258
.
2.
Brouwer
,
M. D.
,
Sadeghi
,
F.
,
Lancaster
,
C.
,
Archer
,
J.
, and
Donaldson
,
J.
,
2013
, “
Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers
,”
ASME J. Tribol.
,
135
(
4
), p.
041102
.
3.
Wang
,
L.
,
Snidle
,
R.
, and
Gu
,
L.
,
2000
, “
Rolling Contact Silicon Nitride Bearing Technology: A Review of Recent Research
,”
Wear
,
246
(
1–2
), pp.
159
173
.
4.
Li
,
C.
,
1982
, “
Dynamics of Rotor Bearing Systems Supported by Floating Ring Bearings
,”
ASME J. Lubr. Technol.
,
104
(
4
), pp.
469
477
.
5.
San Andres
,
L.
,
Rivadeneria
,
J. C.
,
Chinta
,
M.
,
Gjika
,
K.
, and
La Rue
,
G.
,
2007
, “
Nonlinear Rotordynamics of Automotive Turbochargers: Predictions and Comparisons to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
488
494
.
6.
San Andres
,
L.
,
Rivadeneria
,
J. C.
,
Gjika
,
K.
,
Groves
,
G.
, and
La Rue
,
G.
,
2007
, “
A Virtual Tool for Prediction of Turbocharger Nonlinear Dynamic Response: Validation Against Test Data
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1035
1047
.
7.
San Andres
,
L.
,
Rivadeneria
,
J. C.
,
Gjika
,
K.
,
Groves
,
G.
, and
La Rue
,
G.
,
2007
, “
Rotordynamics of Small Turbochargers Supported on Floating Ring Bearings—Highlights in Bearing Analysis and Experimental Validation
,”
ASME J. Tribol.
,
129
(
2
), pp.
391
398
.
8.
Kirk
,
R. G.
,
Alsaeed
,
A. A.
, and
Gunter
,
E. J.
,
2007
, “
Stability Analysis of a High-Speed Automotive Turbocharger
,”
Tribol. Trans.
,
50
(
3
), pp.
427
434
.
9.
Sunnersjö
,
C.
,
1978
, “
Varying Compliance Vibrations of Rolling Bearings
,”
J. Sound Vib.
,
58
(
3
), pp.
363
373
.
10.
Gupta
,
P. K.
,
1984
,
Advanced Dynamics of Rolling Elements
,
Springer-Verlag
,
New York
.
11.
Saheta
,
V.
,
2001
, “
Dynamics of Rolling Element Bearings Using Discrete Element Method
,” M.S. thesis, Purdue University, West Lafayette, IN.
12.
Ghaisas
,
N.
,
Wassgren
,
C.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
126
(
4
), pp.
681
689
.
13.
Gupta
,
T. C.
,
Gupta
,
K. K.
, and
Sehgal
,
D. K.
,
2011
, “
Instability and Chaos of a Flexible Rotor Ball Bearing System: An Investigation on the Influence of Rotating Imbalance and Bearing Clearance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
082501
.
14.
Stacke
,
L.
,
Fritzson
,
D.
, and
Nordling
,
P.
,
1999
, “
BEAST—A Rolling Bearing Simulation Tool
,”
Proc. Inst. Mech. Eng., Part K
,
213
(
2
), pp.
63
71
.
15.
Brouwer
,
M. D.
,
Sadeghi
,
F.
,
Ashtekar
,
A.
,
Archer
,
J.
, and
Lancaster
,
C.
,
2015
, “
Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling
,”
Tribol. Trans.
,
58
(
2
), pp.
300
315
.
16.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2011
, “
Experimental and Analytical Investigation of High Speed Turbocharger Ball Bearings
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
122501
.
17.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Tribol.
,
101
(
3
), pp.
293
302
.
18.
Liu
,
X.
,
Deng
,
S.
, and
Teng
,
H.
,
2011
, “
Dynamic Stability Analysis of Cages in High-Speed Oil-Lubricated Angular Contact Ball Bearings
,”
Trans. Tianjin Univ.
,
17
(
1
), pp.
20
27
.
19.
Brecher
,
C.
,
Hassis
,
A.
, and
Rossaint
,
J.
,
2014
, “
Cage Friction in High-Speed Spindle Bearings
,”
Tribol. Trans.
,
57
(
1
), pp.
77
85
.
20.
Krämer
,
E.
,
1993
,
Dynamics of Rotors and Foundations
,
Springer-Verlag
,
Berlin
.
21.
Gargiulo
,
E. P.
, Jr.
,
1980
, “
A Simple Way to Estimate Bearing Stiffness
,”
Mach. Des.
,
52
(
17
), pp.
107
110
.
22.
Gunter
,
E. J.
,
Barrett
,
L. E.
, and
Allaire
,
P. E.
,
1977
, “
Design of Nonlinear Squeeze Film Dampers for Aircraft Engines
,”
ASME J. Lubr. Technol.
,
99
(
1
), pp.
57
64
.
23.
Taylor
,
D. L.
, and
Kumar
,
B. R. K.
,
1980
, “
Nonlinear Response of Short Squeeze Film Dampers
,”
ASME J. Tribol.
,
102
(
1
), pp.
51
58
.
24.
Vance
,
J. M.
,
1988
,
Rotordynamics of Turbomachinery
,
Wiley
,
New York
.
25.
Hamrock
,
B.
,
Schmid
,
S.
, and
Jacobson
,
B.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
,
New York
.
26.
Zeidan
,
F. Y.
,
San Andres
,
L.
, and
Vance
,
J. M.
,
1996
, “
Design and Application of Squeeze Film Dampers in Rotating Machinery
,”
25th Turbomachinery Symposium
, Texas A&M University, College Station, TX, pp.
169
188
.
27.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
, 4th ed.,
Wiley
,
New York
.
28.
Hamrock
,
B. J.
, and
Anderson
,
W. J.
,
1983
, “
Rolling-Element Bearings
,” The National Aeronautics and Space Administration, Washington, DC,
NASA Reference Publication 1105
.
You do not currently have access to this content.