In order to investigate the vacuum tribological properties of a Ti-46Al-2Cr-2Nb alloy, dry-sliding tribological tests of the alloy against AISI 52,100 steel ball under different sliding speeds and loads were performed at a high vacuum of 4.0 × 10−4 Pa by ball-on-disk rotating configuration, and the same tests were done in air for comparative purposes. It is an important finding that the TiAl intermetallics have good wear resistance in vacuum, not like that in air. The wear rate of the Ti-46Al-2Cr-2Nb alloy in vacuum is almost lower by an order of magnitude than that in air.

References

1.
Appel
,
F.
, and
Wagner
,
R.
,
1998
, “
Microstructure and Deformation of Two-Phase γ-Titanium Aluminides
,”
Mater. Sci. Eng. R
,
22
, pp.
187
268
.10.1016/S0927-796X(97)00018-1
2.
Djanarthany
,
S.
,
Viala
,
J. C.
, and
Bouix
,
J.
,
2001
, “
An Overview of Monolithic Titanium Aluminides Based on Ti3Al and TiAl
,”
Mater. Chem. Phys.
,
72
(
3
), pp.
301
319
.10.1016/S0254-0584(01)00328-5
3.
Wang
,
Y. H.
,
Lin
,
J. P.
,
He
,
Y. H.
,
Wang
,
Y. L.
, and
Chen
,
G. L.
,
2008
, “
Fabrication and SPS Microstructures of Ti-45Al-8.5Nb-(W,B,Y) Alloying Powders
,”
Intermetallics
,
16
(
2
), pp.
215
224
.10.1016/j.intermet.2007.09.010
4.
Lu
,
X.
,
He
,
X. B.
,
Zhang
,
B.
,
Zhang
,
L.
,
Qu
,
X. H.
, and
Guo
,
Z. X.
,
2009
, “
Microstructure and Mechanical Properties of a Spark Plasma Sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y Alloy
,”
Intermetallics
,
17
(
10
), pp.
840
846
.10.1016/j.intermet.2009.03.013
5.
Xu
,
X. J.
,
Xu
,
L. H.
,
Lin
,
J. P.
,
Wang
,
Y. L.
,
Lin
,
Z.
, and
Chen
,
G. L.
,
2005
, “
Pilot Processing and Microstructure Control oHigh Nb Containing TiAl Alloy
,”
Intermetallics
,
13
(
3–4
), pp.
337
341
.10.1016/j.intermet.2004.07.007
6.
Niu
,
H. Z.
,
Chen
,
Y. Y.
,
Kong
,
F. T.
, and
Lin
,
J. P.
,
2012
, “
Microstructure Evolution, Hot Deformation Behavior and Mechanical Properties of Ti-43Al-6Nb-1B Aalloy
,”
Intermetallics
,
31
, pp.
249
256
.10.1016/j.intermet.2012.07.016
7.
Qiu
,
C.
,
Liu
,
Y.
,
Zhang
,
W.
,
Liu
,
B.
, and
Liang
,
X.
,
2012
, “
Development of a Nb-Free TiAl-Based Intermetallics With a Low-Temperature Superplasticity
,”
Intermetallics
,
27
, pp.
46
51
.10.1016/j.intermet.2012.01.009
8.
Kawabata
,
T.
,
Fukai
,
H.
, and
Izumi
,
O.
,
1998
, “
Effect of Ternary Additions on Mechanical Properties of TiAl
,”
Acta Mater.
,
46
(
6
), pp.
2185
2194
.10.1016/S1359-6454(97)00422-9
9.
Electric
,
G.
,
Titanium Aluminide
. Available at http://en.wikipedia.org/wiki/Titanium_aluminide, Accessed 16 April 2008.
10.
Rastkar
,
A.
,
Bloyce
,
A.
, and
Bell
,
T.
,
2000
, “
Sliding Wear Behaviour of Two Gamma-Based Titanium Aluminides
,”
Wear
,
240
(
1–2
), pp.
19
26
.10.1016/S0043-1648(00)00334-3
11.
Li
,
C.
,
Xia
,
J.
, and
Dong
,
H.
,
2006
, “
Sliding Wear of TiAl Intermetallics Against Steel and Ceramics of Al2O3, Si3N4 and WC/Co
,”
Wear
,
261
(
5–6
), pp.
693
701
.10.1016/j.wear.2006.01.044
12.
Miyoshi
,
K.
,
Lerch
,
B.
, and
Draper
,
S.
,
2003
, “
Fretting Wear of Ti-48Al-2Cr-2Nb
,”
Tribol. Int.
,
36
(
2
), pp.
145
153
.10.1016/S0301-679X(02)00142-1
13.
Liu
,
X.
,
Tian
,
W.
,
Xu
,
W.
,
Liang
,
W.
, and
Xu
,
Z.
,
2007
, “
Wear Resistance of TiAl Intermetallics by Plasma Alloying and Plasma Carburization
,”
Surf. Coat. Technol.
,
201
(
9–11
), pp.
5278
5281
.10.1016/j.surfcoat.2006.07.144
14.
Liu
,
X. B.
, and
Wang
,
H. M.
,
2006
, “
Modification of Tribology and High-Temperature Behavior of Ti-48Al-2Cr-2Nb Intermetallic Alloy by Laser Cladding
,”
Appl. Surf. Sci.
,
252
(
16
), pp.
5735
5744
.10.1016/j.apsusc.2005.07.064
15.
Sopunna
,
K.
,
Thongtem
,
T.
,
Mcnallan
,
M.
, and
Thongtem
,
S.
,
2006
, “
Formation of Titanium Nitride on γ-TiAl Alloys by Direct Metal-Gas Reaction
,”
J. Mater. Sci.
,
41
(
14
), pp.
4654
4662
.10.1007/s10853-006-0030-y
16.
Li
,
X. J.
,
Cheng
,
G. A.
,
Xue
,
W. B.
,
Zheng
,
R. T.
, and
Cheng
,
Y. J.
,
2008
, “
Wear and Corrosion Resistant Coatings Formed by Microarc Oxidation on TiAl Alloy
,”
Mater. Chem. Phys.
,
107
(
1
), pp.
148
152
.10.1016/j.matchemphys.2007.06.067
17.
Rastkar
,
A.
, and
Bell
,
T.
,
2005
, “
Characterization and Tribological Performance of Oxide Layers on a Gamma Based Titanium Aluminide
,”
Wear
,
258
(
11–12
), pp.
1616
1624
.10.1016/j.wear.2004.11.014
18.
Cheng
,
J.
,
Yang
,
J.
,
Zhang
,
X.
,
Zhong
,
H.
,
Ma
,
J.
,
Li
,
F.
,
Fu
,
L.
,
Bi
,
Q.
,
Li
,
J.
, and
Liu
,
W.
,
2012
, “
High Temperature Tribological Behavior of a Ti-46Al-2Cr-2Nb Intermetallics
,”
Intermetallics
,
31
, pp.
121
126
.10.1016/j.intermet.2012.06.013
19.
Cheng
,
J.
,
Yang
,
J.
,
Ma
,
J.
,
Bi
,
Q.
,
Zhang
,
X.
,
Fu
,
L.
,
Li
,
F.
,
Zhu
,
S.
, and
Liu
,
W.
,
2012
, “
The Tribological Behavior of a Ti-46Al-2Cr-2Nb Alloy Under Liquid Paraffine Lubrication
,”
Tribol. Lett.
,
46
(
3
), pp.
1
9
.10.1007/s11249-012-9942-7
20.
Cheng
,
J.
,
Yu
,
Y.
,
Fu
,
L.
,
Li
,
F.
,
Qiao
,
Z.
,
Li
,
J.
,
Yang
,
J.
, and
Liu
,
W.
,
2013
, “
Effect of TiB2 on Dry-Sliding Tribological Properties of TiAl Intermetallics
,”
Tribol. Int.
,
62
, pp.
91
99
.10.1016/j.triboint.2013.02.006
21.
Muratore
,
C.
, and
Voevodin
,
A.
,
2009
, “
Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments
,”
Annu. Rev. Mater. Res.
,
39
, pp.
297
324
.10.1146/annurev-matsci-082908-145259
22.
Mishina
,
H.
,
1992
, “
Atmospheric Characteristics in Friction and Wear of Metals
,”
Wear
,
152
(
1
), pp.
99
110
.10.1016/0043-1648(92)90207-O
23.
Yang
,
J.
,
La
,
P.
,
Liu
,
W.
, and
Xue
,
Q.
,
2004
, “
Tribological Properties of FeAl Intermetallics Under Dry Sliding
,”
Wear
,
257
(
1–2
), pp.
104
109
.10.1016/j.wear.2003.10.012
24.
La
,
P.
,
Xue
,
Q.
, and
Liu
,
W.
,
2001
, “
Effects of Boron Doping on Tribological Properties of Ni3Al–Cr7C3 Coatings Under Dry Sliding
,”
Wear
,
249
(
1–2
), pp.
93
99
.10.1016/S0043-1648(01)00523-3
25.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1986
,
The Friction and Lubrication of Solids
,
Clarendon
,
London
, pp.
374
.
26.
Gardos
,
M. N.
,
1989
, “
The Effect of Anion Vacancies of the Tribological Properties of Rutile (TiO2−x)
,”
Tribol. Trans.
,
32
(
1
), pp.
30
31
.10.1080/10402008908981858
27.
Gardos
,
M. N.
,
Hong
,
H. S.
, and
Winer
,
W. O.
,
1990
, “
The Effect of Anion Vacancies on the Tribological Properties of Rutile (TiO2−x), Part II: Experimental Evidence
,”
Tribol. Trans.
,
33
(
2
), pp.
209
220
.10.1080/10402009008981949
28.
Mcfarlane
,
J.
, and
Tabor
,
D.
,
1950
, “
Relation Between Friction and Adhesion
,”
Proc. R. Soc. London Ser. A
,
202
(
1069
), pp.
244
253
.10.1098/rspa.1950.0097
29.
Bouchoucha
,
A.
,
Chekroud
,
S.
, and
Paulmier
,
D.
,
2004
, “
Influence of the Electrical Sliding Speed on Friction and Wear Processes in an Electrical Contact Copper–Stainless Steel
,”
Appl. Surf. Sci.
,
223
(
4
), pp.
330
342
.10.1016/j.apsusc.2003.09.018
You do not currently have access to this content.