In order to investigate the vacuum tribological properties of a Ti-46Al-2Cr-2Nb alloy, dry-sliding tribological tests of the alloy against AISI 52,100 steel ball under different sliding speeds and loads were performed at a high vacuum of 4.0 × 10−4 Pa by ball-on-disk rotating configuration, and the same tests were done in air for comparative purposes. It is an important finding that the TiAl intermetallics have good wear resistance in vacuum, not like that in air. The wear rate of the Ti-46Al-2Cr-2Nb alloy in vacuum is almost lower by an order of magnitude than that in air.
Issue Section:
Friction & Wear
References
1.
Appel
, F.
, and Wagner
, R.
, 1998
, “Microstructure and Deformation of Two-Phase γ-Titanium Aluminides
,” Mater. Sci. Eng. R
, 22
, pp. 187
–268
.10.1016/S0927-796X(97)00018-12.
Djanarthany
, S.
, Viala
, J. C.
, and Bouix
, J.
, 2001
, “An Overview of Monolithic Titanium Aluminides Based on Ti3Al and TiAl
,” Mater. Chem. Phys.
, 72
(3
), pp. 301
–319
.10.1016/S0254-0584(01)00328-53.
Wang
, Y. H.
, Lin
, J. P.
, He
, Y. H.
, Wang
, Y. L.
, and Chen
, G. L.
, 2008
, “Fabrication and SPS Microstructures of Ti-45Al-8.5Nb-(W,B,Y) Alloying Powders
,” Intermetallics
, 16
(2
), pp. 215
–224
.10.1016/j.intermet.2007.09.0104.
Lu
, X.
, He
, X. B.
, Zhang
, B.
, Zhang
, L.
, Qu
, X. H.
, and Guo
, Z. X.
, 2009
, “Microstructure and Mechanical Properties of a Spark Plasma Sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y Alloy
,” Intermetallics
, 17
(10
), pp. 840
–846
.10.1016/j.intermet.2009.03.0135.
Xu
, X. J.
, Xu
, L. H.
, Lin
, J. P.
, Wang
, Y. L.
, Lin
, Z.
, and Chen
, G. L.
, 2005
, “Pilot Processing and Microstructure Control oHigh Nb Containing TiAl Alloy
,” Intermetallics
, 13
(3–4
), pp. 337
–341
.10.1016/j.intermet.2004.07.0076.
Niu
, H. Z.
, Chen
, Y. Y.
, Kong
, F. T.
, and Lin
, J. P.
, 2012
, “Microstructure Evolution, Hot Deformation Behavior and Mechanical Properties of Ti-43Al-6Nb-1B Aalloy
,” Intermetallics
, 31
, pp. 249
–256
.10.1016/j.intermet.2012.07.0167.
Qiu
, C.
, Liu
, Y.
, Zhang
, W.
, Liu
, B.
, and Liang
, X.
, 2012
, “Development of a Nb-Free TiAl-Based Intermetallics With a Low-Temperature Superplasticity
,” Intermetallics
, 27
, pp. 46
–51
.10.1016/j.intermet.2012.01.0098.
Kawabata
, T.
, Fukai
, H.
, and Izumi
, O.
, 1998
, “Effect of Ternary Additions on Mechanical Properties of TiAl
,” Acta Mater.
, 46
(6
), pp. 2185
–2194
.10.1016/S1359-6454(97)00422-99.
Electric
, G.
, Titanium Aluminide
. Available at http://en.wikipedia.org/wiki/Titanium_aluminide, Accessed 16 April 2008.10.
Rastkar
, A.
, Bloyce
, A.
, and Bell
, T.
, 2000
, “Sliding Wear Behaviour of Two Gamma-Based Titanium Aluminides
,” Wear
, 240
(1–2
), pp. 19
–26
.10.1016/S0043-1648(00)00334-311.
Li
, C.
, Xia
, J.
, and Dong
, H.
, 2006
, “Sliding Wear of TiAl Intermetallics Against Steel and Ceramics of Al2O3, Si3N4 and WC/Co
,” Wear
, 261
(5–6
), pp. 693
–701
.10.1016/j.wear.2006.01.04412.
Miyoshi
, K.
, Lerch
, B.
, and Draper
, S.
, 2003
, “Fretting Wear of Ti-48Al-2Cr-2Nb
,” Tribol. Int.
, 36
(2
), pp. 145
–153
.10.1016/S0301-679X(02)00142-113.
Liu
, X.
, Tian
, W.
, Xu
, W.
, Liang
, W.
, and Xu
, Z.
, 2007
, “Wear Resistance of TiAl Intermetallics by Plasma Alloying and Plasma Carburization
,” Surf. Coat. Technol.
, 201
(9–11
), pp. 5278
–5281
.10.1016/j.surfcoat.2006.07.14414.
Liu
, X. B.
, and Wang
, H. M.
, 2006
, “Modification of Tribology and High-Temperature Behavior of Ti-48Al-2Cr-2Nb Intermetallic Alloy by Laser Cladding
,” Appl. Surf. Sci.
, 252
(16
), pp. 5735
–5744
.10.1016/j.apsusc.2005.07.06415.
Sopunna
, K.
, Thongtem
, T.
, Mcnallan
, M.
, and Thongtem
, S.
, 2006
, “Formation of Titanium Nitride on γ-TiAl Alloys by Direct Metal-Gas Reaction
,” J. Mater. Sci.
, 41
(14
), pp. 4654
–4662
.10.1007/s10853-006-0030-y16.
Li
, X. J.
, Cheng
, G. A.
, Xue
, W. B.
, Zheng
, R. T.
, and Cheng
, Y. J.
, 2008
, “Wear and Corrosion Resistant Coatings Formed by Microarc Oxidation on TiAl Alloy
,” Mater. Chem. Phys.
, 107
(1
), pp. 148
–152
.10.1016/j.matchemphys.2007.06.06717.
Rastkar
, A.
, and Bell
, T.
, 2005
, “Characterization and Tribological Performance of Oxide Layers on a Gamma Based Titanium Aluminide
,” Wear
, 258
(11–12
), pp. 1616
–1624
.10.1016/j.wear.2004.11.01418.
Cheng
, J.
, Yang
, J.
, Zhang
, X.
, Zhong
, H.
, Ma
, J.
, Li
, F.
, Fu
, L.
, Bi
, Q.
, Li
, J.
, and Liu
, W.
, 2012
, “High Temperature Tribological Behavior of a Ti-46Al-2Cr-2Nb Intermetallics
,” Intermetallics
, 31
, pp. 121
–126
.10.1016/j.intermet.2012.06.01319.
Cheng
, J.
, Yang
, J.
, Ma
, J.
, Bi
, Q.
, Zhang
, X.
, Fu
, L.
, Li
, F.
, Zhu
, S.
, and Liu
, W.
, 2012
, “The Tribological Behavior of a Ti-46Al-2Cr-2Nb Alloy Under Liquid Paraffine Lubrication
,” Tribol. Lett.
, 46
(3
), pp. 1
–9
.10.1007/s11249-012-9942-720.
Cheng
, J.
, Yu
, Y.
, Fu
, L.
, Li
, F.
, Qiao
, Z.
, Li
, J.
, Yang
, J.
, and Liu
, W.
, 2013
, “Effect of TiB2 on Dry-Sliding Tribological Properties of TiAl Intermetallics
,” Tribol. Int.
, 62
, pp. 91
–99
.10.1016/j.triboint.2013.02.00621.
Muratore
, C.
, and Voevodin
, A.
, 2009
, “Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments
,” Annu. Rev. Mater. Res.
, 39
, pp. 297
–324
.10.1146/annurev-matsci-082908-14525922.
Mishina
, H.
, 1992
, “Atmospheric Characteristics in Friction and Wear of Metals
,” Wear
, 152
(1
), pp. 99
–110
.10.1016/0043-1648(92)90207-O23.
Yang
, J.
, La
, P.
, Liu
, W.
, and Xue
, Q.
, 2004
, “Tribological Properties of FeAl Intermetallics Under Dry Sliding
,” Wear
, 257
(1–2
), pp. 104
–109
.10.1016/j.wear.2003.10.01224.
La
, P.
, Xue
, Q.
, and Liu
, W.
, 2001
, “Effects of Boron Doping on Tribological Properties of Ni3Al–Cr7C3 Coatings Under Dry Sliding
,” Wear
, 249
(1–2
), pp. 93
–99
.10.1016/S0043-1648(01)00523-325.
Bowden
, F. P.
, and Tabor
, D.
, 1986
, The Friction and Lubrication of Solids
, Clarendon
, London
, pp. 374
.26.
Gardos
, M. N.
, 1989
, “The Effect of Anion Vacancies of the Tribological Properties of Rutile (TiO2−x)
,” Tribol. Trans.
, 32
(1
), pp. 30
–31
.10.1080/1040200890898185827.
Gardos
, M. N.
, Hong
, H. S.
, and Winer
, W. O.
, 1990
, “The Effect of Anion Vacancies on the Tribological Properties of Rutile (TiO2−x), Part II: Experimental Evidence
,” Tribol. Trans.
, 33
(2
), pp. 209
–220
.10.1080/1040200900898194928.
Mcfarlane
, J.
, and Tabor
, D.
, 1950
, “Relation Between Friction and Adhesion
,” Proc. R. Soc. London Ser. A
, 202
(1069
), pp. 244
–253
.10.1098/rspa.1950.009729.
Bouchoucha
, A.
, Chekroud
, S.
, and Paulmier
, D.
, 2004
, “Influence of the Electrical Sliding Speed on Friction and Wear Processes in an Electrical Contact Copper–Stainless Steel
,” Appl. Surf. Sci.
, 223
(4
), pp. 330
–342
.10.1016/j.apsusc.2003.09.018Copyright © 2014 by ASME
You do not currently have access to this content.