Contact of viscoelastic materials with complicated properties and surface topography require numerical solution approaches. This paper presents a 3-D semianalytical contact model for viscoelastic materials. With the hereditary integral operator and elastic-viscoelastic correspondence principle, surface displacement is expressed in terms of viscoelastic creep compliance and contact pressure distribution history in the course of a contact process. Through discretizing the contact equations in both spatial and temporal dimensions, a numerical algorithm based on the robust Conjugate Gradient method and Fast Fourier transform has been developed to solve the normal approach, contact pressure, and real contact area simultaneously. The transient contact analysis in the time domain is computationally expensive. The fast Fourier transform algorithm can help reduce the computation cost significantly. The comparisons of the new numerical results with an analytical viscoelastic contact solution for Maxwell materials and with an indentation test measurement reported in the literature has validated and demonstrated the accuracy of the proposed model. Moreover, the present model has been used to simulate the contact between a polymethyl methacrylate (PMMA) substrate and a rigid sphere driven by step, ramped, and harmonic normal loads. The validated model and numerical method can successfully compute the viscoelastic contact responses of polymer-based materials with time-dependent properties and surface roughness subjected to complicated loading profiles.

References

1.
Brinson
,
H. F.
, and
Brinson
,
L. C.
, 2008,
Polymer Engineering Science and Viscoelasticity: An Introduction,
Springer
,
New York.
2.
Lee
,
E. H.
, and
Radok
,
J. R. M.
, 1960,
“The Contact Problem for Viscoelastic Bodies,”
ASME J. Appl. Mech
.,
27
, pp.
438
444
.
3.
Radok
,
J. R. M.
, 1957,
“Viscoelastic Stress Analysis,”
Q. Appl. Math.
,
15
(
2
), pp.
198
202
.
4.
Hunter
,
S. C.
, 1960,
“The Hertz Problem for a Rigid Spherical Indenter and a Viscoelastic Half-Space,”
J. Mech. Phys. Solids
,
8
, pp.
219
234
.
5.
Ting
,
T. C. T.
, 1966,
“The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space,”
ASME J. Appl. Mech.
,
33
, pp.
845
854
.
6.
Ting
,
T. C. T.
, 1968,
“Contact Problems in the Linear Theory of Viscoelasticity,”
ASME J. Appl. Mech.
,
35
, pp.
248
254
.
7.
Persson
,
B. N. J.
, 2001,
“Theory of Rubber Friction and Contact Mechanics,”
J. Chem. Phys.
,
115
(
8
), pp.
3840
3861
.
8.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Creton
,
C.
, and
Peveri
,
V.
, 2004,
“Contact Area Between a Viscoelastic Solid and a Hard, Randomly Rough, Substrate,”
J. Chem. Phys.
,
120
(
18
), pp.
8779
8793
.
9.
Persson
,
B. N. J.
, and
Tosatti
,
E.
, 2000,
“Qualitative Theory of Rubber Friction and Wear,”
J. Chem. Phys.
,
112
(
4
), pp.
2021
2029
.
10.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966,
“Contact of Nominally Flat Surfaces,”
Proc. Roy. Soc. (London)
,
A295
(
1442
), pp.
300
319
.
11.
Le Gal
,
A.
,
Yang
,
X.
, and
Kluppel
,
M.
, 2005,
“Evaluation of Sliding Friction and Contact Mechanics of Elastomers Based on Dynamic-Mechanical Analysis,”
J. Chem. Phys.
,
123
(
1
), p.
014704
.
12.
Le Gal
,
A.
, and
Kluppel
,
M.
, 2008,
“Investigation and Modeling of Rubber Stationary Friction on Rough Surfaces,”
J. Phys. Condens. Matter.
,
20
, p.
015007
.
13.
Farhang
,
K.
, and
Lim
,
A. L.
, 2006,
“A Non-Phenomenological Account of Friction/Vibration Interaction In Rotary Systems,”
ASME J. Tribol.
,
128
, pp.
103
112
.
14.
Farhang
,
K.
, and
Lim
,
A.
, 2007,
“A Kinetic Friction Model for Viscoelastic Contact of Nominally Flat Rough Surfaces,”
ASME J. Tribol.
,
129
, pp.
684
688
.
15.
Lu
,
H.
,
Wang
,
B.
,
Ma
,
J.
,
Huang
,
G.
, and
Viswanathan
,
H.
, 2003,
“Measurement of Creep Compliance of Solid Polymers by Nanoindentation,”
Mech. Time-Depend. Mater.
,
7
, pp.
189
207
.
16.
Cheng
,
L.
,
Xia
,
X.
,
Scriven
,
L. E.
, and
Gerberich
,
W. W.
, 2005,
“Spherical-Tip Indentation of Viscoelastic Material,”
Mech. Time-Depend. Mater.
,
37
, pp.
213
236
.
17.
Oyen
,
M. L.
, 2006,
“Analytical Techniques for Indentation of Viscoelastic Materials,”
Philos. Mag.
,
86
, pp.
5625
5641
.
18.
Zhang
,
C. Y.
,
Zhang
,
Y. W.
,
Zeng
,
K. Y.
, and
Shen
,
L.
, 2006,
“Characterization of Mechanical Properties of Polymers by Nanoindentation Tests,”
Philos. Mag.
,
86
, pp.
4487
4506
.
19.
Huang
,
G. B.
,
Wang
,
B.
, and
Lu
,
H.
, 2004,
“Measurements of Viscoelastic Functions of Polymers in the Frequency-Domain Using Nanoindentation,”
Mech. Time-Depend. Mater.
,
8
, pp.
345
364
.
20.
Kumar
,
M. V. R.
, and
Narasimhan
,
R.
, 2004,
“Analysis of Spherical Indentation of Linear Viscoelastic Materials,”
Curr. Sci
.,
87
, pp.
1088
1095
.
21.
Yang
,
S.
,
Zhang
Y.W.
, and
Zeng
,
K. Y.
, 2004,
“Analysis of Nanoindentation Creep for Polymeric Materials,”
J. Appl. Phys.
,
95
, pp.
3655
3666.
22.
Tweedie
,
C. A.
, and
Vliet
,
K. J. V.
, 2006,
“Contact Creep Compliance of Viscoelastic Materials Via Nanoindentation,”
J. Mater. Res.
,
21
, pp.
1576
1589
.
23.
Johnson
,
K. L.
, 1985,
Contact Mechanics,
Cambridge University Press
,
London
.
24.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999,
“A Numerical Method for Solving Rough Contact Problems Based on Multi-Level Multi-Summation and Conjugate Gradient Techniques,”
Wear
,
231
, pp.
206
219
.
25.
Ju
,
Y.
, and
Farris
,
T. N.
, 1996,
“Spectral Analysis of Two-Dimensional Contact Problems,”
ASME J. Tribol
.,
118
, pp.
320
328
.
26.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000,
“A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses,”
Wear
,
243
, pp.
101
111
.
27.
Briscoe
,
B. J.
,
Fiori
,
L.
, and
Pelillo
,
E.
, 1998,
“Nano-Indentation of Polymeric Surfaces,”
J. Phys. D: Appl. Phys.
,
31
, pp.
2395
2405
.
28.
Hu
,
Y. Z.
, and
Tonder
,
K.
, 1992,
“Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis,”
Int. J. Mach. Tools Manufact.
,
32
, pp.
83
90
.
29.
Liu
,
S. B.
, and
Wang
,
Q.
, 2001,
“A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces,”
ASME J. Tribol.
,
123
, pp.
17
26
.
30.
Lee
,
S. C.
, and
Ren
,
N.
, 1996,
“Behavior of Elastic-Plastic Rough Surface Contacts as Affected by the Surface Topography, Load and Material Hardness,”
Tribol. Trans
.,
39
(
1
), pp.
67
74
.
31.
Peng
,
W.
, and
Bhushan
,
B.
, 2002,
“Sliding Contact Analysis of Layered Elastic/Plastic Solids With Rough Surfaces,”
ASME J. Tribol.
,
124
, pp.
46
61
.
You do not currently have access to this content.