ZrB2-containing composite coating was fabricated on pure Ti substrate by laser surface alloying. The microstructure of the composite coating was investigated by means of X-ray diffraction and scanning electron microscopy (SEM). The friction and wear properties of ZrB2-containing composite coating sliding against a GCr15 steel ball at different normal loads and sliding speeds were evaluated. The morphologies of the worn surfaces were analyzed by means of SEM and three dimensional noncontact surface mapping. It is shown that the microhardness and wear resistance of the pure Ti substrate are greatly increased after laser surface alloying, due to the formation of hard ZrB2 phase in the composite coating. Pure Ti substrate sliding against the GCr15 counterpart ball at room temperature is dominated by adhesion wear, abrasive wear, and severe plastic deformation, while ZrB2-containing composite coating involves only mild abrasive and fatigue wear when sliding against the GCr15 counterpart.

1.
Matsuura
,
K.
, and
Kudoh
,
M.
, 2002, “
Surface Modification of Titanium by a Diffusional Carbo-Nitriding Method
,”
Acta Mater.
1359-6454,
50
(
10
), pp.
2693
2700
.
2.
Courant
,
B.
,
Hantzpergue
,
J. J.
,
Avril
,
L.
, and
Benayoun
,
S.
, 2005, “
Structure and Hardness of Titanium Surfaces Carburized by Pulsed Laser Melting With Graphite Addition
,”
J. Mater. Process. Technol.
0924-0136,
160
(
3
), pp.
374
381
.
3.
Langelier
,
B. C.
, and
Esmaeili
,
S.
, 2009, “
In-Situ Laser-Fabrication and Characterization of TiC-Containing Ti–Co Composite on Pure Ti Substrate
,”
J. Alloys Compd.
0925-8388,
482
(
1–2
), pp.
246
252
.
4.
Lee
,
H.
,
Mall
,
S.
, and
Murray
,
K. N.
, 2007, “
Fretting Wear Behavior of Cu–Al Coating on Ti-6Al-4V Substrate Under Dry and Wet (Lubricated) Contact Condition
,”
Tribol. Lett.
1023-8883,
28
(
1
), pp.
19
25
.
5.
Swalla
,
D. R.
,
Neu
,
R. W.
, and
McDowell
,
D. L.
, 2004, “
Microstructural Characterization of Ti-6Al-4V Subjected to Fretting
,”
Trans. ASME, J. Tribol.
0742-4787,
126
(
4
), pp.
809
816
.
6.
García
,
I.
, and
De Damborenea
,
J. J.
, 1998, “
Corrosion Properties of Tin Prepared by Laser Gas Alloying of Ti and Ti6Al4V
,”
Corros. Sci.
0010-938X,
40
, pp.
1411
1419
.
7.
Baker
,
T. N.
, and
Selamat
,
M. S.
, 2008, “
Surface Engineering of Ti–6Al–4V by Nitriding and Powder Alloying Using CW CO2 Laser
,”
Mater. Sci. Technol.
0267-0836,
24
(
2
), pp.
189
200
.
8.
Jiang
,
P.
,
He
,
X. L.
,
Li
,
X. X.
,
Yu
,
L. G.
, and
Wang
,
H. M.
, 2000, “
Wear Resistance of a Laser Surface Alloyed Ti–6Al–4V Alloy
,”
Surf. Coat. Technol.
0257-8972,
130
, pp.
24
28
.
9.
Nolan
,
D.
,
Huang
,
S. W.
,
Leskovsek
,
V.
, and
Braun
,
S.
, 2006, “
Sliding Wear of Titanium Nitride Thin Films Deposited on Ti–6Al–4V Alloy by PVD and Plasma Nitriding Processes
,”
Surf. Coat. Technol.
0257-8972,
200
(
20–21
), pp.
5698
5705
.
10.
Liu
,
H. X.
,
Tang
,
B. Y.
,
Wang
,
L. P.
, and
Wang
,
X. F.
, 2005, “
Improvement on Surface Properties of Titanium Alloy by Plasma Immersion Ion Implantation Technique
,”
Rare Met. Mater. Eng.
1002-185X,
34
(
8
), pp.
1318
1321
.
11.
Vadiraj
,
A.
,
Kamaraj
,
M.
, and
Gnanamoorthy
,
R.
, 2007, “
Fretting Wear Studies on Uncoated, Plasma Nitrided and Laser Nitrided Biomedical Titanium Alloys
,”
Mater. Sci. Eng., A
0921-5093,
445–446
, pp.
446
453
.
12.
Navas
,
C.
,
Colaco
,
R.
,
De Damborenea
,
J.
, and
Vilar
,
R.
, 2006, “
Abrasive Wear Behaviour of Laser Clad and Flame Sprayed-Melted NiCrBSi Coatings
,”
Surf. Coat. Technol.
0257-8972,
200
(
24
), pp.
6854
6862
.
13.
Abboud
,
J. H.
,
Fidel
,
A. F.
, and
Benyounis
,
K. Y.
, 2008, “
Surface Nitriding of Ti–6Al–4V Alloy With a High Power CO2 Laser
,”
Opt. Laser Technol.
0030-3992,
40
(
2
), pp.
405
414
.
14.
Chen
,
Y.
, and
Wang
,
H. M.
, 2003, “
Growth Morphologies and Mechanism of TiC in the Laser Surface Alloyed Coating on the Substrate of TiAl Intermetallics
,”
J. Alloys Compd.
0925-8388,
351
, pp.
304
308
.
15.
Conde
,
A.
,
Zubiri
,
F.
, and
De Damborenea
,
Y. J.
, 2002, “
Cladding of Ni-Cr-B-Si Coatings With a High Power Diode Laser
,”
Mater. Sci. Eng., A
0921-5093,
334
(
1–2
), pp.
233
238
.
16.
Duraiselvam
,
M.
,
Galun
,
R.
,
Wesling
,
V.
,
Mordike
,
B. L.
,
Reiter
,
R.
,
Oligmuller
,
J.
, and
Buvanashekaran
,
G.
, 2007, “
Cavitation Erosion Resistance of Ti-6Al-4V Laser Alloyed With TiC-Reinforced Dual Phase Intermetallic Matrix Composites
,”
Mater. Sci. Eng., A
0921-5093,
454
, pp.
63
68
.
17.
Guo
,
B.
,
Zhou
,
J.
,
Zhang
,
S.
,
Zhou
,
H.
,
Pu
,
Y.
, and
Chen
,
J.
, 2008, “
Microstructure and Tribological Properties of In Situ Synthesized TiN/Ti3Al Intermetallic Matrix Composite Coatings on Titanium by Laser Cladding and Laser Nitriding
,”
Mater. Sci. Eng., A
0921-5093,
480
(
1–2
), pp.
404
410
.
18.
Chen
,
Y.
, and
Wang
,
H. M.
, 2005, “
Laser Melted TiC Reinforced Nickel Aluminide Matrix In Situ Composites
,”
J. Alloys Compd.
0925-8388,
391
(
1–2
), pp.
49
54
.
19.
Galan
,
C. A.
,
Ortiz
,
A. L.
,
Guiberteau
,
F.
, and
Shaw
,
L. L.
, 2009, “
Crystallite Size Refinement of ZrB2 by High-Energy Ball Milling
,”
J. Am. Ceram. Soc.
0002-7820,
92
(
12
), pp.
3114
3117
.
20.
Hu
,
P.
,
Zhang
,
X. H.
,
Han
,
J. C.
,
Luo
,
X. G.
, and
Du
,
S. Y.
, 2010, “
Effect of Various Additives on the Oxidation Behavior of ZrB2-Based Ultra-High-Temperature Ceramics at 1800°C
,”
J. Am. Ceram. Soc.
0002-7820,
93
(
2
), pp.
345
349
.
21.
Licheri
,
R.
,
Orru
,
R.
,
Musa
,
C.
, and
Cao
,
G.
, 2009, “
Fabrication of Fully Dense ZrB2- and HfB2-Based Ultra High Temperature Ceramics by Combining Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering
,”
ICheaP-9: Ninth International Conference on Chemical and Process Engineering
, Vol.
1–3
, pp.
1705
1710
.
22.
Kumar
,
G. N.
,
Narayanasamy
,
R.
,
Natarajan
,
S.
,
Babu
,
S. P. K.
,
Sivaprasad
,
K.
, and
Sivasankaran
,
S.
, 2010, “
Dry Sliding Wear Behaviour of AA 6351-ZrB2 In Situ Composite at Room Temperature
,”
Mater. Des.
0264-1275,
31
(
3
), pp.
1526
1532
.
23.
Podchernyaeva
,
I. A.
,
Panasyuk
,
A. D.
,
Panashenko
,
V. M.
, and
Grigor’ev
,
O. N.
, 2009, “
Abrasive Wear of ZrB2-Containing Spark-Deposited and Combined Coatings on Titanium Alloy. I. Microstructure and Composition of ZrB2-Containing Coatings
,”
Powder Metall. Met. Ceram.
1068-1302,
48
(
5–6
), pp.
316
325
.
24.
Podchernyaeva
,
I. A.
,
Panasyuk
,
A. D.
,
Grigor’ev
,
O. N.
,
Yurechko
,
D. V.
,
Varyukhno
,
V. V.
, and
Bloshchanevich
,
A. M.
, 2007, “
Wear Resistance of a Plasma-Electrospark Zirconium Diboride-Based Coating on Aluminum Alloy D16T
,”
Powder Metall. Met. Ceram.
1068-1302,
46
, pp.
248
253
.
25.
Das Bakshi
,
S.
,
Basu
,
B.
, and
Mishra
,
S. K.
, 2006, “
Fretting Wear Properties of Sinter-HIPed ZrO2–ZrB2 Composites
,”
Composites, Part A
1359-835X,
37
(
10
), pp.
1652
1659
.
26.
Podchernyaeva
,
I. A.
,
Panasyuk
,
A. D.
,
Panashenko
,
V. M.
,
Grigor’ev
,
O. N.
,
Dukhota
,
A. I.
, and
Zhiginas
,
V. V.
, 2009, “
Abrasive Wear of ZrB2-Containing Spark-Deposited and Combined Coatings on Titanium Alloy. II. Nonfixed-Abrasive Wear of ZrB2-Containing Coatings
,”
Powder Metall. Met. Ceram.
1068-1302,
48
(
7–8
), pp.
435
440
.
27.
Rau
,
J. V.
,
Ferro
,
D.
,
Falcone
,
M. B.
,
Generosi
,
A.
,
Albertini
,
V. R.
,
Latini
,
A.
,
Teghil
,
R.
, and
Barinov
,
S. M.
, 2008, “
Hardness of Zirconium Diboride Films Deposited on Titanium Substrates
,”
Mater. Chem. Phys.
0254-0584,
112
(
2
), pp.
504
509
.
28.
Wang
,
Z.
,
Chen
,
L.
, and
Zhang
,
X.
, 2009, “
Microstructure and Properties of In Situ Synthesized ZrC–ZrB2/Fe Composite Coating Produced by GTAW
,”
Int. J. Mod. Phys. B
0217-9792,
23
(
6–7
), pp.
1438
1443
.
29.
Chamberlain
,
A. L.
,
Fahrenholtz
,
W. G.
, and
Hilmas
,
G. E.
, 2009, “
Reactive Hot Pressing of Zirconium Diboride
,”
J. Eur. Ceram. Soc.
0955-2219,
29
(
16
), pp.
3401
3408
.
30.
Chen
,
D.
,
Xu
,
L.
,
Zhang
,
X.
,
Ma
,
B.
, and
Hu
,
P.
, 2009, “
Preparation of ZrB2 Based Hybrid Composites Reinforced With SiC Whiskers and SiC Particles by Hot-Pressing
,”
Int. J. Refract. Met. Hard Mater.
0263-4368,
27
(
4
), pp.
792
795
.
31.
Monteverde
,
F.
,
Guicciardi
,
S.
, and
Bellosi
,
A.
, 2003, “
Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics
,”
Mater. Sci. Eng., A
0921-5093,
346
(
1–2
), pp.
310
319
.
32.
Sun
,
C. -N.
,
Baldridge
,
T.
, and
Gupta
,
M. C.
, 2009, “
Fabrication of ZrB2–Zr Cermet Using Laser Sintering Technique
,”
Mater. Lett.
0167-577X,
63
(
28
), pp.
2529
2531
.
33.
Sun
,
C. N.
, and
Gupta
,
M. C.
, 2008, “
Laser Sintering of ZrB2
,”
J. Am. Ceram. Soc.
0002-7820,
91
(
5
), pp.
1729
1731
.
34.
Gadkari
,
A.
,
Khanna
,
A. S.
, and
Dahotre
,
N. B.
, 2000, “
Wear Resistance of Laser Alloyed ZrB2 Coating on Mild Steel
,”
Thermal Spray Surface Engineering via Applied Research
,
ASM International
,
Materials Park, OH
, pp.
999
1004
.
35.
Amado
,
J. M.
,
Tobar
,
M. J.
,
Alvarez
,
J. C.
,
Lamas
,
J.
, and
Yanez
,
A.
, 2009, “
Laser Cladding of Tungsten Carbides (Spherotene (R)) Hardfacing Alloys for the Mining and Mineral Industry
,”
Appl. Surf. Sci.
0169-4332,
255
(
10
), pp.
5553
5556
.
36.
Chao
,
M. J.
,
Wang
,
W. L.
,
Liang
,
E. J.
, and
Ouyang
,
D. X.
, 2008, “
Microstructure and Wear Resistance of TaC Reinforced Ni-Based Coating by Laser Cladding
,”
Surf. Coat. Technol.
0257-8972,
202
(
10
), pp.
1918
1922
.
37.
Zhu
,
Y. -C.
,
Yukimura
,
K.
,
Ding
,
C. -X.
, and
Zhang
,
P. -Y.
, 2001, “
Tribological Properties of Nanostructured and Conventional WC–Co Coatings Deposited by Plasma Spraying
,”
Thin Solid Films
0040-6090,
388
, pp.
277
282
.
38.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
0021-8979,
24
(
8
), pp.
981
988
.
39.
Guo
,
B. G.
,
Zhou
,
J. S.
,
Zhang
,
S. T.
,
Zhou
,
H. D.
,
Pu
,
Y. P.
, and
Chen
,
J. M.
, 2008, “
Tribological Properties of Titanium Aluminides Coatings Produced on Pure Ti by Laser Surface Alloying
,”
Surf. Coat. Technol.
0257-8972,
202
(
17
), pp.
4121
4129
.
40.
Guo
,
B.
,
Zhou
,
J.
,
Zhang
,
S.
,
Zhou
,
H.
,
Pu
,
Y.
, and
Chen
,
J.
, 2007, “
Phase Composition and Tribological Properties of Ti–Al Coatings Produced on Pure Ti by Laser Cladding
,”
Appl. Surf. Sci.
0169-4332,
253
(
24
), pp.
9301
9310
.
41.
Chu
,
C. L.
, and
Wu
,
S. K.
, 1995, “
A Study on the Dry Uni-Directional Sliding Behaviour of Titanium Aluminides
,”
Scr. Metall. Mater.
0956-716X,
33
, pp.
139
143
.
42.
Erdemir
,
A.
,
Halter
,
M.
, and
Fenske
,
G. R.
, 1997, “
Preparation of Ultralow-Friction Surface Films on Vanadium Diboride
,”
Wear
0043-1648,
205
, pp.
236
239
.
43.
AsadiKouhanjani
,
S.
,
ZareBidaki
,
A.
, and
Akbari
,
A.
, 2009, “
The Effect of Sliding Speed and Amount of Loading on Friction and Wear Behavior of Cu–0.65 wt.%Cr Alloy
,”
J. Alloys Compd.
0925-8388,
486
(
1–2
), pp.
319
324
.
You do not currently have access to this content.