Line contact problems, such as those seen in spur gears and cam-roller follower systems, are often simplified with the plane-strain assumption and thus modeled by two-dimensional equations. However, in order to address the effects of roughness and textured surfaces, three-dimensional modeling is necessary. The challenge arises when the contact domain is several orders of magnitude greater than the grid size needed to properly describe the surface roughness or texture. Considering the surface geometry of a so-called “line contact,” the contact domain is nonperiodic in contact width direction, but it can be treated as periodic in the contact length direction–semiperiodic line contact problem. Thus, only a section of the entire contact domain is used as the computational domain with a much-reduced size. Based on an in-depth investigation of available algorithms, DC-FFTS and DC-CC-FFT algorithms are proposed. The DC-FFTS algorithm is a modified discrete convolution and fast Fourier transform algorithm with superposition of influence coefficients. The DC-CC-FFT algorithm is a hybrid fast Fourier transform based algorithm, which combines the discrete convolution–FFT and the continuous convolution–FFT methods. The proposed algorithms are used to solve three-dimensional displacement, contact pressure, and stresses for line contact problems. The results are compared with the other available algorithms from literature. The accuracy and efficiency of different algorithms are discussed.

1.
Hua
,
D. Y.
,
Farhang
,
K.
, and
Seitzman
,
L. E.
, 2007, “
A Multi-Scale System Analysis and Verification for Improved Contact Fatigue Life Cycle of a Cam-Roller System
,”
ASME J. Tribol.
0742-4787,
129
, pp.
321
325
.
2.
Hooke
,
C. J.
, and
Li
,
K. Y.
, 2006, “
Validation of the Stress Predictions in Rolling EHL Contacts Having In-Line Roughness Using the Inverse Method
,”
ASME J. Tribol.
0742-4787,
128
, pp.
745
752
.
3.
ASTM G133-05, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear.
4.
ASTM D2714-94, Standard Test Method for Calibration and Operation of the Falex Block-on-Ring Friction and Wear Testing Machine.
5.
Dowson
,
D.
, and
Higginson
,
G. R.
, 1977,
Elastohydrodynamic Lubrication
,
Pergamon
,
New York
.
6.
Webster
,
M. N.
, and
Sayles
,
R. S.
, 1986, “
A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces
,”
ASME J. Tribol.
,
108
, pp.
314
320
. 0742-4787
7.
Ju
,
Y.
, and
Farris
,
T. N.
, 1996, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
0742-4787,
118
, pp.
320
328
.
8.
Mihailidis
,
A.
,
Bakolas
,
N.
, and
Drivakos
,
N.
, 2001, “
Subsurface Stress Field of a Dry Line Contact
,”
Wear
,
249
, pp.
546
556
. 0043-1648
9.
Bucher
,
F.
,
Knothe
,
K.
, and
Theiler
,
A.
, 2002, “
Normal and Tangential Contact Problem of Surfaces With Measured Roughness
,”
Wear
0043-1648,
253
, pp.
204
218
.
10.
Yang
,
P.
,
Wang
,
J.
, and
Kaneta
,
M.
, 2006, “
Thermal and Non-Newtonian Numerical Analyses for Starved EHL Line Contacts
,”
ASME J. Tribol.
0742-4787,
128
, pp.
282
290
.
11.
Gupta
,
P. K.
, and
Walowit
,
J. A.
, 1974, “
Contact Stresses Between an Elastic Cylinder and a Layered Elastic Solid
,”
ASME J. Lubr. Technol.
0022-2305,
96
, pp.
250
257
.
12.
Merriman
,
T.
, and
Kannel
,
J.
, 1989, “
Analyses of the Role of Surface Roughness on Contact Stresses Between Elastic Cylinders With and Without Soft Surface Coating
,”
ASME J. Tribol.
,
111
, pp.
87
94
. 0742-4787
13.
Cole
,
S. J.
, and
Sayles
,
R. S.
, 1992, “
A Numerical Model for the Contact of Layered Elastic Bodies With Real Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
114
, pp.
334
340
.
14.
Elsharkawy
,
A. A.
, and
Hamrock
,
B. J.
, 1993, “
A Numerical Solution for Dry Sliding Line Contact of Multilayered Elastic Bodies
,”
ASME J. Tribol.
0742-4787,
115
, pp.
237
245
.
15.
Goryacheva
,
I.
,
Sadeghi
,
F.
, and
Nickel
,
D. A.
, 1996, “
Internal Stresses in Contact of a Rough Body and a Viscoelastic Layered Semi-Infinite Plane
,”
ASME J. Tribol.
0742-4787,
118
, pp.
131
136
.
16.
Mao
,
K.
,
Sun
,
Y.
, and
Bell
,
T.
, 1996, “
A Numerical Model for the Dry Sliding Contact of Layered Elastic Bodies With Rough Surfaces
,”
Tribol. Trans.
1040-2004,
39
, pp.
416
424
.
17.
Mao
,
K.
,
Bell
,
T.
, and
Sun
,
Y.
, 1997, “
Effect of Sliding Friction on Contact Stresses for Multi-Layered Elastic Bodies With Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
119
, pp.
476
480
.
18.
Ramachandra
,
S.
, and
Ovaert
,
T. C.
, 2000, “
Effect of Coating Geometry on Contact Stresses in Two-Dimensional Discontinuous Coating
,”
ASME J. Tribol.
0742-4787,
122
, pp.
665
671
.
19.
Kadiric
,
A.
,
Sayles
,
R. S.
,
Zhou
,
X. B.
, and
Ioannides
,
E.
, 2003, “
A Numerical Study of the Contact Mechanics and Sub-Surface Stress Effects Experienced Over a Range of Machined Surface Coatings in Rough Surface Contacts
,”
ASME J. Tribol.
0742-4787,
125
, pp.
720
730
.
20.
Stephens
,
L. S.
,
Liu
,
Y.
, and
Meletis
,
E. I.
, 2000, “
Finite Element Analysis of the Initial Yielding Behavior of a Hard Coating/Substrate System With Functionally Graded Interface Under Indentation and Friction
,”
ASME J. Tribol.
0742-4787,
122
, pp.
381
387
.
21.
Luo
,
J. F.
,
Liu
,
Y. J.
, and
Berger
,
E. J.
, 2000, “
Interfacial Stress Analysis for Multi-Coating Systems Using an Advanced Boundary Element Method
,”
Comput. Mech.
0178-7675,
24
, pp.
448
455
.
22.
Dong
,
C.
, and
Bonnet
,
M.
, 2002, “
An Integral Formulation for Steady-state Elastoplastic Contact Over a Coated Half-plane
,”
Comput. Mech.
,
28
, pp.
105
121
. 0178-7675
23.
Saizonou
,
C.
,
Kouitat-Njiwa
,
R.
, and
von Stebut
,
J.
, 2002, “
Surface Engineering With Functionally Graded Coatings: A Numerical Study Based on the Boundary Element Method
,”
Surf. Coat. Technol.
,
153
, pp.
290
297
. 0257-8972
24.
Yang
,
J.
, and
Komvopoulos
,
K.
, 2004, “
Dynamic Indentation of an Elastic-Plastic Multi-Layered Medium by a Rigid Cylinder
,”
ASME J. Tribol.
0742-4787,
126
, pp.
18
27
.
25.
Mostofi
,
A.
, and
Gohar
,
R.
, 1983, “
Elastohydrodynamic Lubrication of Finite Line Contacts
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
598
604
.
26.
Chen
,
X. Y.
, 1993,
Isothermal Elastohydrodynamic Lubrication of Finite Line Contacts
,
Zhejiang University
,
Hangzhou, China
(in Chinese).
27.
Park
,
T. J.
, and
Kim
,
K. W.
, 1998, “
Elastohydrodynamic Lubrication of a Finite Line Contact
,”
Wear
0043-1648,
223
, pp.
102
109
.
28.
Liu
,
X.
, and
Yang
,
P.
, 2002, “
Analysis of the Thermal Elastohydrodynamic Lubrication of a Finite Line Contact
,”
Tribol. Int.
0301-679X,
35
, pp.
137
144
.
29.
Kushwaha
,
M.
,
Rahnejat
,
H.
, and
Gohar
,
R.
, 2002, “
Aligned and Misaligned Contacts of Rollers to Races in Elastohydrodynamic Finite Line Conjunctions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
216
, pp.
1051
1070
. 0022-2542
30.
Francisco
,
A.
,
Frene
,
J.
, and
Blouin
,
A.
, 2002, “
Multilevel Solution of the Elastohydrodynamic Contact for the Water Lubricated Silicon Carbide 3D Line Contact
,”
Tribol. Trans.
1040-2004,
45
, pp.
110
116
.
31.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
32.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
110
.
33.
Liu
,
S.
,
Hua
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q.
, 2007, “
Tribological Modeling: Application of Fast Fourier Transform
,”
Tribol. Int.
0301-679X,
40
, pp.
1284
1293
.
34.
Chen
,
W. W.
,
Liu
,
S.
, and
Wang
,
Q.
, 2008, “
Fast Fourier Transform Based Numerical Methods for Elastoplastic Contacts of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
011022
.
35.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. London, Ser. A
0950-1207,
295
, pp.
300
319
.
36.
Liu
,
S.
, and
Wang
,
Q.
, 2002, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
0742-4787,
124
, pp.
36
45
.
37.
Brandt
,
A.
, and
Lubrecht
,
A. A.
, 1990, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
0021-9991,
90
, pp.
348
370
.
38.
Liu
,
S.
, and
Wang
,
Q.
, 2005, “
Elastic Fields Due to Eigenstrains in a Half-Space
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
871
878
.
39.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A New Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
40.
Smith
,
J. O.
, and
Liu
,
C. K.
, 1953, “
Stresses Due to Tangential and Normal Loads on an Elastic Solid With Application to Some Contact Stress Problems
,”
ASME J. Appl. Mech.
,
75
, pp.
157
166
. 0021-8936
You do not currently have access to this content.