A dynamic model for deep groove and angular contact ball bearings was developed to investigate the influence of race defects on the motions of bearing components (i.e., inner and outer races, cage, and balls). In order to determine the effects of dents on the bearing dynamics, a model was developed to determine the force-deflection relationship between an ellipsoid and a dented semi-infinite domain. The force-deflection relationship for dented surfaces was then incorporated in the bearing dynamic model by replacing the well-known Hertzian force-deflection relationship whenever a ball/dent interaction occurs. In this investigation, all bearing components have six degrees-of-freedom. Newton’s laws are used to determine the motions of all bearing elements, and an explicit fourth-order Runge–Kutta algorithm with a variable or constant step size was used to integrate the equations of motion. A model was used to study the effect of dent size, dent location, and inner race speed on bearing components. The results indicate that surface defects and irregularities like dent have a severe effect on bearing motion and forces. Furthermore, these effects are even more severe for high-speed applications. The results also demonstrate that a single dent can affect the forces and motion throughout the entire bearing and on all bearing components. However, the location of the dent dictates the magnitude of its influence on each bearing component.

1.
Bohmer
,
H. J.
, 1993, “
A New Approach to Determine the Effect of Nonmetallic Inclusions on Material Behavior in Rolling Contact
,”
Creative Use of Bearing Steels
,
J. J. C.
Hoo
, ed.,
American Society for Testing and Materials
,
Philadelphia
, STP Vol.
1195
, pp.
211
221
.
2.
Courbon
,
J.
,
Lormand
,
G.
,
Dudragne
,
G.
,
Daguier
,
P.
, and
Vincent
,
A.
, 2003, “
Influence of Inclusion Pairs, Clusters and Stringers on the Lower Bound of the Endurance Limit of Bearing Steels
,”
Tribol. Int.
0301-679X,
36
, pp.
921
928
.
3.
Raje
,
N. N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, Jr.
, and
Hoeprich
,
M. R.
, 2007, “
Evaluation of Stresses Around Inclusions in Hertzian Contacts Using the Discrete Element Method
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
283
291
.
4.
Tallian
,
T. E.
, 1976, “
Prediction of Rolling Contact Fatigue Life in Contaminated Lubricant: Part I—Mathematical Model
,”
ASME J. Lubr. Technol.
0022-2305,
98
, pp.
251
257
.
5.
Tallian
,
T. E.
, 1976, “
Prediction of Rolling Contact Fatigue Life in Contaminated Lubricant: Part II—Experimental
,”
ASME J. Lubr. Technol.
0022-2305,
98
, pp.
384
392
.
6.
Ville
,
F.
, and
Nélias
,
D.
, 1998, “
Influence of the Nature and Size of Solid Particles on the Indentation Features in EHL Contacts
,”
Tribology for Energy Conservation: Proceedings of the 24th Leeds-Lyon Symposium on Tribology
,
Dowson
,
D.
,
Taylor
,
C. M.
,
Childs
,
T. H. C.
,
Dalmaz
,
G.
,
Berthier
,
Y.
,
Flamand
,
L.
,
Georges
,
J. -M.
, and
Lubrecht
,
A. A.
, eds.,
Elsevier
,
London
, Vol.
34
, pp.
399
410
.
7.
Ville
,
F.
, and
Nélias
,
D.
, 1999, “
Early Fatigue Failure Due to Dents in EHL Contacts
,”
Tribol. Trans.
1040-2004,
40
(
4
), pp.
795
800
.
8.
Ville
,
F.
, and
Nélias
,
D.
, 1999, “
An Experimental Study on the Concentration and Shape of Dents Caused by Spherical Metallic Particles in EHL Contacts
,”
Tribol. Trans.
1040-2004,
42
(
1
), pp.
231
240
.
9.
Xu
,
G.
, and
Sadeghi
,
F.
, 1996, “
Spall Initiation and Propagation Due to Debris Denting
,”
Wear
0043-1648,
201
(
1–2
), pp.
106
116
.
10.
Xu
,
G.
,
Sadeghi
,
F.
, and
Cogdell
,
J. D.
, 1997, “
Debris Denting Effects on Elastohydrodynamic Lubricated Contacts
,”
ASME J. Tribol.
0742-4787,
119
(
3
), pp.
579
587
.
11.
Xu
,
G.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. R.
, 1997, “
Residual Stresses Due to Debris Effects in EHL Contacts
,”
Tribol. Trans.
1040-2004,
40
(
4
), pp.
613
620
.
12.
Xu
,
G.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. R.
, 1998, “
Dent Initiated Spall Formation in EHL Rolling/Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
120
(
3
), pp.
453
462
.
13.
Kang
,
Y. S.
, 2004, “
Debris Effects and Denting Process on Lubricated Contacts
,” Ph.D. thesis, Purdue University, West Lafayette.
14.
Gupta
,
P. K.
, 1979, “
Dynamics of Rolling Element Bearings—Part III: Ball Bearing Analysis
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
312
318
.
15.
Gupta
,
P. K.
, 1979, “
Dynamics of Rolling Element Bearings—Part IV: Ball Bearing Results
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
319
326
.
16.
Gupta
,
P. K.
, 1984,
Advanced Dynamics of Rolling Elements
,
Springer-Verlag
,
New York
.
17.
Stacke
,
L.-E.
,
Fritzson
,
D.
, 2001, “
Dynamic Behavior of Rolling Bearings: Simulations and Experiments
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
(
6
), pp.
499
508
.
18.
Saheta
,
V.
, 2001, “
Dynamics of Rolling Element Bearings using Discrete Element Method
,” M.S. thesis, Purdue University, West Lafayette.
19.
Ghaisas
,
N.
,
Wassgren
,
C.
, and
Sadeghi
,
F.
, 2004, “
Cage Instabilities in Cylindrical Roller Bearings
,”
ASME J. Tribol.
0742-4787,
126
(
4
), pp.
681
689
.
20.
Harsha
,
S. P.
,
Sandeep
,
K.
, and
Prakash
,
R.
, 2004, “
Non-Linear Dynamic Behaviors of Rolling Element Bearings Due to Surface Waviness
,”
J. Sound Vib.
0022-460X,
272
pp.
557
580
.
21.
Jang
,
G.
, and
Jeong
,
S.-W.
, 2004, “
Vibration Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness
,”
J. Sound Vib.
0022-460X,
269
, pp.
709
726
.
22.
Changqing
,
B.
, and
Qingyu
,
X.
, 2006, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vib.
0022-460X,
294
, pp.
23
48
.
23.
Stanley
,
H. M.
, and
Kato
,
T.
, 1997, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
0742-4787,
119
, pp.
481
485
.
You do not currently have access to this content.