A 3D numerical study is carried out for a vertical direct chill (DC) rolling ingot caster for an aluminum alloy (AA-5052). The model incorporated the coupled turbulent melt flow and solidification aspects of the casting process. The caster consists of a low-head hot-top mold. The melt is assumed to have been delivered through the entire top cross section of the caster. The previously verified in-house computational fluid dynamics (CFD) code is used to investigate the effects of the important parameters such as casting speed, inlet melt superheat, and mold-metal contact effective heat transfer coefficient (HTC) on the low-head casting process. It is found that the sump depth (SD), liquid depth, and mushy thickness (MT) at the center of the ingot increase linearly with the casting speed while the shell thickness (ST) at the exit of the mold decreases linearly with the casting speed. Useful correlations concerning the above quantities with casting speed have been provided for the benefit of DC casting operators.

References

1.
Grealy
,
G. P.
,
Davis
,
J. L.
,
Jensen
,
E. K.
, and
Moritz
,
P. A. T. J.
,
2001
, “
Advances for DC Ingot Casting: Part 2—Heat Transfer and Casting Results
,”
Light Metals
,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
813
821
.
2.
Rinderer
,
B.
,
Austen
,
P.
, and
Tuff
,
A.
,
2003
, “
Casthouse Modifications for Improved Slab Quality
,”
Light Metals 2003
,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
1
6
.
3.
Grandfield
,
J. F.
,
Eskin
,
D. G.
, and
Bainbridge
,
I.
,
2013
,
Direct-Chill Casting of Light Alloys: Science and Technology
,
John Wiley and Sons
,
Hoboken, NJ
, pp.
242
and 334.
4.
Eskin
,
D. G.
,
2008
,
Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, Advances in Metallic Alloys
,
CRC Press
,
Boca Raton, FL
, pp.
120
122
.
5.
Begum
,
L.
, and
Hasan
,
M.
,
2014
, “
3-D CFD Simulation of a Vertical Direct Chill Slab Caster With a Submerged Nozzle and a Porous Filter Delivery System
,”
Int. J. Heat Mass Transfer
,
73
, pp.
42
58
.10.1016/j.ijheatmasstransfer.2014.01.072
6.
Begum
,
L.
, and
Hasan
,
M.
,
2014
, “
Modeling of 3-D Turbulent Transport Phenomena and Solidification of a Direct Chill Caster Fitted With a Metallic-Foam-Plated Combo Bag
,”
Int. J. Therm. Sci.
,
86
, pp.
68
87
.10.1016/j.ijthermalsci.2014.06.031
7.
Begum
,
L.
,
2013
, “
3-D Transport Phenomena in Vertical Direct Chill Casting Processes
,” Ph.D. thesis, Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada.
8.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of the Flow Near a Spinning Disk
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
138
.
9.
ASM Aerospace Specification Metals Inc., 2015, “Aluminum Alloy 5052; Physical Properties, Thermal Properties,” http://asm.matweb.com and www.aircraftmaterials.com/data/aluminum/5052/html
10.
Voller
,
V. R.
, and
Prakash
,
C. A
,
1987
, “
Fixed Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.10.1016/0017-9310(87)90317-6
11.
Seyedein
,
S. H.
, and
Hasan
,
M. A.
,
1997
, “
Three-Dimensional Simulation of Coupled Turbulent Flow and Macroscopic Solidification Heat Transfer for Continuous Slab Casters
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4405
4423
.10.1016/S0017-9310(97)00064-1
12.
Vreeman
,
C. J.
, and
Incropera
,
F. P.
,
2000
, “
The Effect of Free-Floating Dendrites and Convection on Macrosegregation in Direct Chill Cast Aluminum Alloys Part II: Predictions for Al–Cu and Al–Mg Alloys
,”
Int. J. Heat Mass Transfer
,
43
(
5
), pp.
687
704
.10.1016/S0017-9310(99)00175-1
13.
McClelland, T., 2013, private communication.
14.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, 1st ed.,
Hemisphere Publishing
,
New York
, pp.
88
90
and 126–131.
15.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
, “
An Introduction to Computational Fluid Dynamics
,”
The Finite Volume Method
, 1st ed.,
Longman Scientific Technical
,
Essex, UK
, pp.
142
146
.
16.
Jones
,
W. K.
, Jr.
, and
Evans
,
J. W.
,
1998
, “
Physical Modeling of the Effects of Non-Symmetric Placement of Flow Control Bags Used in Semi-Continuous Casting of Aluminum
,”
Light Metals
,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
1051
1057
.
17.
Caron
,
E. J. F. R.
,
Baserinia
,
A. R.
,
Ng
,
H.
,
Wells
,
M. A.
, and
Weckman
,
D. C.
,
2012
, “
Heat-Transfer Measurements in the Primary Cooling Phase of the Direct-Chill Casting Process
,”
Matall. Mater. Trans. B
,
43
(
5
), pp.
1202
1213
.10.1007/s11663-012-9688-5
You do not currently have access to this content.