This paper experimentally investigates the effect of rotation on heat transfer in typical turbine blade serpentine coolant passage with ribbed walls at low Mach numbers. To achieve the low Mach number (around 0.01) condition, pressurized Freon R-134a vapor is utilized as the working fluid. The flow in the first passage is radial outward, after the 180 deg tip turn the flow is radial inward to the second passage, and after the 180 deg hub turn the flow is radial outward to the third passage. The effects of rotation on the heat transfer coefficients were investigated at rotation numbers up to 0.6 and Reynolds numbers from 30,000 to 70,000. Heat transfer coefficients were measured using the thermocouples-copper-plate-heater regional average method. Heat transfer results are obtained over a wide range of Reynolds numbers and rotation numbers. An increase in heat transfer rates due to rotation is observed in radially outward passes; a reduction in heat transfer rate is observed in the radially inward pass. Regional heat transfer coefficients are correlated with Reynolds numbers for nonrotation and with rotation numbers for rotating condition, respectively. The results can be useful for understanding real rotor blade coolant passage heat transfer under low Mach number, medium–high Reynolds number, and high rotation number conditions.

References

1.
Han
,
J. C.
, and
Huh
,
M.
,
2010
, “
Recent Studies in Turbine Blade Internal Cooling
,”
Heat Transfer Res.
,
41
(
8
), pp.
801
828
.10.1615/HeatTransRes.v41.i8.20
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
3.
Fu
,
L. W.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2006
, “
Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45 Degree Ribbed Walls
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1130
1141
.10.1115/1.2352782
4.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
.10.1016/0017-9310(78)90113-8
5.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
628
635
.10.1115/1.3239782
6.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
(
2
), pp.
321
328
.10.1115/1.3250487
7.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.10.1016/0017-9310(88)90235-9
8.
Taslim
,
M. E.
, and
Lengkong
,
A.
,
1998
, “
45-Degree Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
,
120
(
3
), pp.
571
580
.10.1115/1.2841755
9.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel with 45° Round Edged Ribs at High Reynolds Numbers
,”
ASME J. Turbomach
,
133
(
3
), p.
031019
.10.1115/1.4001243
10.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.10.1115/1.2927879
11.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.10.1115/1.2928265
12.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer
,
114
(
4
), pp.
850
858
.10.1115/1.2911892
13.
Zhang
,
Y. M.
,
Han
,
J. C.
,
Parsons
,
J. A.
, and
Lee
,
C. P.
,
1995
, “
Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With 60-Degree Angled Rib Turbulators
,”
ASME J. Turbomach.
,
117
(
2
), pp.
272
278
.10.1115/1.2835656
14.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Tip Walls
,”
ASME J. Turbomach.
,
116
(
4
), pp.
738
744
.10.1115/1.2929467
15.
Dutta
,
S.
, and
Han
,
J. C.
,
1996
, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels With Three Channel Orientations
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
578
584
.10.1115/1.2822671
16.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J. C.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2002
, “
Heat Transfer in A Two-Pass Rectangular Rotating Channel With 45-deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
251
259
.10.1115/1.1450569
17.
Wright
,
L. M.
,
Liu
,
Y. H.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in Trailing Edge Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
7
), p.
071701
.10.1115/1.2907437
18.
Zhou
,
F.
, and
Acharya
,
S.
,
2008
, “
Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45 deg Skewed Ribs
,”
ASME J. Turbomach.
,
130
(
2
), p. 021019.10.1115/1.2752185
19.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2010
, “
High Rotation Number Effect on Heat Transfer in a Triangular Channel With 45°, Inverted 45°, and 90° Ribs
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071702
.10.1115/1.4000986
20.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.10.1115/1.4003172
21.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in a Two-Pass Rectangular Channel (AR = 1:4) Under High Rotation Numbers
,”
ASME J. Heat Transfer
,
130
(
8
), p.
081701
.10.1115/1.2909615
22.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y. H.
, and
Han
,
J. C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
113
(
2
), p.
021001
.10.1115/1.4000549
23.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4:1) With Angled Ribs
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
378
387
.10.1115/1.1860564
24.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45° Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
1
), pp.
164
174
.10.1115/1.1791649
25.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2005
,
Convection Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
26.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2013
, “
Heat Transfer Measurements in Rotating Blade-Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.10.1115/1.4026945
27.
McEligot
,
D.
, and
Jackson
,
J.
,
2004
. “
Deterioration Criteria for Convective Heat Transfer in Gas Flow Through Non-Circular Ducts
,”
Nucl. Eng. Des.
,
232
(
3
), pp.
327
333
.10.1016/j.nucengdes.2004.05.004
28.
Lee
,
J.
,
Hejzlar
,
P.
,
Saha
,
P.
,
Stahle
,
P.
,
Kazimi
,
M.
, and
McEligot
,
D.
,
2008
, “
Deteriorated Turbulent Heat Transfer (DTHT) of Gas Up-Flow in a Circular Tube: Experimental Data
,”
Int. J. Heat Mass Transfer
,
51
(
13-14
), pp.
3259
3266
.10.1016/j.ijheatmasstransfer.2008.03.021
You do not currently have access to this content.