The focus of this paper is a computational fluid dynamics (CFD) analysis of the end winding region of a hydro generator as basis for development of correlations between the convective wall heat transfer coefficient (WHTC) and speed and flow rate parameters. These correlations are used as boundary conditions for thermal networks. Furthermore, there is also a focus on the influence of the numerical settings on the correlations. This work deals with a reduced numerical model which is designed to calculate a hydro generator fast and accurately by using a steady-state simulation with the mixing plane (MP) method.

References

1.
Gerling
,
D.
, and
Dajaku
,
G.
,
2005
, “
Novel Lumped-Parameter Thermal Model for Electrical Systems
,”
Proceedings of European Conference on Power Electronics and Applications
,
Dresden
,
Germany
.
2.
Boglietti
,
A.
,
Cavagnino
,
A.
, and
Staton
,
D.
,
2008
, “
Determination of Critical Parameters in Electrical Machine Thermal Models
,”
IEEE Trans. Ind. Appl.
,
44
(
4
), pp.
1150
1159
.10.1109/TIA.2008.926233
3.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
, 2nd ed.,
Hemisphere Publishing Corporation
,
Washington
, DC.
4.
Boglietti
,
A.
,
Cavagnino
,
A.
,
Staton
,
D. A.
,
Popescu
,
M.
,
Cossar
,
C.
, and
McGilp
,
M. I.
,
2008
, “
End Space Heat Transfer Coefficient Determination for Different Induction Motor Enclosure Types
,”
IEEE Trans. Ind. Appl.
,
45
(
3
), pp.
929
937
.10.1109/TIA.2009.2018967
5.
Micallef
,
C.
,
Pickering
,
S. J.
,
Simmons
,
K. A.
, and
Bradley
,
K. J.
,
2008
, “
Improved Cooling in the End Region of a Strip-Wound Totally Enclosed Fan-Cooled Induction Electric Machine
,”
IEEE Trans. Ind. Electron.
,
55
(
10
), pp.
3517
3524
.10.1109/TIE.2008.2003101
6.
Farnleitner
,
E.
, and
Kastner
,
G.
,
2010
, “
Moderne Methoden der Ventilationsauslegung von Pumpspeichergeneratoren
,”
e&i Elektrotech. Informationstech.
,
127
(
1
), pp.
24
29
.10.1007/s00502-010-0711-8
7.
Toussaint
,
K.
,
Torriano
,
F.
,
Morissette
,
J.-F.
,
Hudon
,
C.
, and
Reggio
,
M.
,
2011
, “
CFD Analysis of Ventilation Flow for a Scale Model Hydro Generator
,”
ASME
Paper No. POWER2011-55202.10.1115/POWER2011-55202
8.
Dépraz
,
R.
,
Zickermann
,
R.
,
Schwery
,
A.
, and
Avellan
,
F.
,
2006
, “
CFD Validation and Air Cooling Design Methodology for Large Hydro Generator
,”
Proceedings of 17th International Conference on Electrical Machines ICEM
,
Greece
.
9.
Ujiie
,
R.
,
Arlitt
,
R.
, and
Etoh
,
H.
,
2005
, “
Application of Computational Fluid Dynamics on Ventilation-Cooling Optimization of Electrical Machines
,”
Colloquium on Large Electrical Machines CIGRE-EPFL
, Lausanne
.
10.
Moradnia
,
P.
,
Chernoray
,
V.
, and
Nilsson
,
H.
,
2012
, “
Experimental and Numerical Study of Cooling Air Flow in a Hydroelectric Generator
,” Proceedings of 9th International ERCOFTAC Symposium on Engineering Turbulence Modeling and Measurements, Thessaloniki, Greece.
11.
Schrittwieser
,
M.
,
Marn
,
A.
,
Farnleitner
,
E.
, and
Kastner
,
G.
,
2014
, “
Numerical Analysis of Heat Transfer and Flow of Stator Duct Models
,”
IEEE Trans. Ind. Appl.
,
50
(
1
), pp.
226
233
.10.1109/TIA.2013.2267191
12.
Houde
,
S.
,
Hudon
,
C.
, and
Vicent
,
P. B.
,
2008
, “
Simulation Strategies of the Cooling Flow for Large Hydro Generators
,”
Hydropower Dams
,
15
(
6
), pp.
93
99
.
13.
2012,
“ansys cfx Documentation,”
ANSYS, Inc., Canonsburg, PA, Release 14.5.
14.
2010,
“ansys icem cfd Documentation,”
ANSYS, Inc., Canonsburg, PA, Release 13.0.
15.
Hettegger
,
M.
,
Streibl
,
B.
,
Bíró
,
O.
, and
Neudorfer
,
H.
,
2012
, “
Measurements and Simulations of the Convective Heat Transfer Coefficients on the End Windings of an Electrical Machine
,”
IEEE Trans. Ind. Electron.
,
59
(
5
), pp.
2299
2308
.10.1109/TIE.2011.2161656
16.
Galpin
,
P.
,
Broberg
,
R.
, and
Hutchinson
,
B.
,
1995
, “
Three-Dimensional Navier-Stokes Predictions of Steady State Rotor-Stator Interaction With Pitch Change
,”
Proceedings of 3rd Annual Conference of the CFD Society of Canada
,
Banff, AB
,
Canada
.
17.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
,
2005
, “
CFD Analysis of a 15 Stage Axial Compressor Part I: Methods
,”
ASME
Paper No. GT2005-68261.10.1115/GT2005-68261
18.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
,
2005
, “
CFD Analysis of a 15 Stage Axial Compressor Part II: Results
,”
ASME
Paper No. GT2005-68262.10.1115/GT2005-68262
19.
Oertel
,
H.
,
2004
,
Prandtl's Essentials of Fluid Mechanics
, 2nd ed.,
Springer-Verlag
,
New York
.
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.10.2514/3.12149
21.
Vieser
,
W.
,
Esch
,
T.
, and
Menter
,
F. R.
,
2002
, “
Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models
,”
CFX Technical Memorandum
,
AEA Technology, Otterfing
,
Germany
.
22.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
23.
Klomberg
,
S.
,
Farnleitner
,
E.
,
Kastner
,
G.
, and
Bíró
,
O.
,
2012
, “
Heat Transfer Analysis on End Windings of a Hydro Generator Using a Stator-Slot-Sector Model
,”
Proceedings of 14th International IGTE Symposium on Numerical Field Calculation
, Graz.
24.
Kreith
,
F.
,
Manglik
,
R. M.
, and
Bohn
,
M. S.
,
2011
,
Principles of Heat Transfer
, 7th ed.,
Cengage Learning, Stamford
,
CT
.10.1115/1.2887901
You do not currently have access to this content.