A heat-driven self-cooling system could potentially utilize the heat dissipated from a device to power a thermo-electric generator (TEG) which could then provide power to run a cooling system. In this paper, numerical simulation and parametric analysis of the geometrical parameters (such as fin density and height) and system parameters are conducted to better understand the performance of the self-cooling system within wide ranges. The study showed further decrease in device temperature could be achieved by using shunt operation instead of direct contact between the device and the TEG module. The use of TEG cascades could also help improve the decrease in power generation as a result of shunt arrangement.

References

1.
Rowe
,
D. M.
,
1999
, “
Thermoelectrics, an Environmentally-Friendly Source of Electrical Power
,”
Renewable Energy
,
16
(
1–4
), pp.
1251
1256
.10.1016/S0960-1481(98)00512-6
2.
Wang
,
Y.
,
Dai
,
C.
, and
Wang
,
S.
,
2013
, “
Theoretical Analysis of a Thermoelectric Generator Using Exhaust Gas of Vehicles as Heat Source
,”
Appl. Energy
,
112
(
0
), pp.
1171
1180
.10.1016/j.apenergy.2013.01.018
3.
Gou
,
X.
,
Xiao
,
H.
, and
Yang
,
S.
,
2010
, “
Modeling, Experimental Study and Optimization on Low-Temperature Waste Heat Thermoelectric Generator System
,”
Appl. Energy
,
87
(
10
), pp.
3131
3136
.10.1016/j.apenergy.2010.02.013
4.
Khattab
,
N. M.
, and
El Shenawy
,
E. T.
,
2006
, “
Optimal Operation of Thermoelectric Cooler Driven by Solar Thermoelectric Generator
,”
Energy Convers. Manage.
,
47
(
4
), pp.
407
426
.10.1016/j.enconman.2005.04.011
5.
Talom
,
H. L.
, and
Beyene
,
A.
,
2009
, “
Heat Recovery From Automotive Engine
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
439
444
.10.1016/j.applthermaleng.2008.03.021
6.
Qiu
,
K.
, and
Hayden
,
A. C. S.
,
2008
, “
Development of a Thermoelectric Self-Powered Residential Heating System
,”
J. Power Sources
,
180
(
2
), pp.
884
889
.10.1016/j.jpowsour.2008.02.073
7.
Hsu
,
C.-T.
,
Huang
,
G.-Y.
,
Chu
,
H.-S.
,
Yu
,
B.
, and
Yao
,
D.-J.
,
2011
, “
Experiments and Simulations on Low-Temperature Waste Heat Harvesting System by Thermoelectric Power Generators
,”
Appl. Energy
,
88
(
4
), pp.
1291
1297
.10.1016/j.apenergy.2010.10.005
8.
Alam
,
H.
, and
Ramakrishna
,
S.
,
2013
, “
A Review on the Enhancement of Figure of Merit From Bulk to Nano-Thermoelectric Materials
,”
Nano Energy
,
2
(
2
), pp.
190
212
.10.1016/j.nanoen.2012.10.005
9.
Chen
,
Z.-G.
,
Han
,
G.
,
Yang
,
L.
,
Cheng
,
L.
, and
Zou
,
J.
,
2012
, “
Nanostructured Thermoelectric Materials: Current Research and Future Challenge
,”
Prog. Nat. Sci. Mater. Int.
,
22
(
6
), pp.
535
549
.10.1016/j.pnsc.2012.11.011
10.
Liu
,
W.
,
Yan
,
X.
,
Chen
,
G.
, and
Ren
,
Z.
,
2012
, “
Recent Advances in Thermoelectric Nanocomposites
,”
Nano Energy
,
1
(
1
), pp.
42
56
.10.1016/j.nanoen.2011.10.001
11.
Elsheikh
,
H. M.
,
Shnawah
,
D. A.
,
Sabri
,
M. F. M.
,
Said
,
S. B. M.
,
Hassan
,
M. H.
,
Bashir
,
M. B. A.
, and
Mohamad
,
M.
,
2014
, “
A Review on Thermoelectric Renewable Energy: Principle Parameters That Affect Their Performance
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
337
355
.10.1016/j.rser.2013.10.027
12.
Kaiwa
,
N.
,
Hoshino
,
M.
,
Yaginuma
,
T.
,
Izaki
,
R.
,
Yamaguchi
,
S.
, and
Yamamoto
,
A.
,
2007
, “
Thermoelectric Properties and Thermoelectric Devices of Free-Standing GaN and Epitaxial GaN Layer
,”
Third International Conference Materials for Advanced Technologies
, ICMAT 2005 Symposium (Thin Solid Films,
515
(
10
), pp.
4501
4504
).
13.
Francioso
,
L.
,
De Pascali
,
C.
,
Farella
,
I.
,
Martucci
,
C.
,
Cretì
,
P.
,
Siciliano
,
P.
, and
Perrone
,
A.
,
2011
, “
Flexible Thermoelectric Generator for Ambient Assisted Living Wearable Biometric Sensors
,”
J. Power Sources
,
196
(
6
), pp.
3239
3243
.10.1016/j.jpowsour.2010.11.081
14.
Chen
,
X.
,
Lin
,
B.
, and
Chen
,
J.
,
2006
, “
The Parametric Optimum Design of a New Combined System of Semiconductor Thermoelectric Devices
,”
Appl. Energy
,
83
(
7
), pp.
681
686
.10.1016/j.apenergy.2005.06.005
15.
Wang
,
X.
,
Yu
,
J.
, and
Ma
,
M.
,
2013
, “
Optimization of Heat Sink Configuration for Thermoelectric Cooling System Based on Entropy Generation Analysis
,”
Int. J. Heat Mass Transfer
,
63
, pp.
361
365
.10.1016/j.ijheatmasstransfer.2013.03.078
16.
Yazawa
,
K.
,
Solbrekken
,
G. L.
, and
Bar-Cohen
,
A.
,
2005
, “
Thermoelectric-Powered Convective Cooling of Microprocessors
,”
IEEE Trans. Adv. Packag.
,
28
(
2
), pp.
231
239
.10.1109/TADVP.2005.846854
17.
Solbrekken
,
G. L.
,
Yazawa
,
K.
, and
Bar-Cohen
,
A.
,
2008
, “
Heat Driven Cooling of Portable Electronics Using Thermoelectric Technology
,”
IEEE Trans. Adv. Packag.
,
31
(
2
), pp.
429
437
.10.1109/TADVP.2008.920356
18.
Zhou
,
Y.
,
Paul
,
S.
, and
Bhunia
,
S.
,
2008
, “
Harvesting Wasted Heat in a Microprocessor Using Thermoelectric Generators: Modeling, Analysis and Measurement
,” DATE’08, Munich, Germany, Mar. 10–14, pp.
98
103
.
19.
Gould
,
C. A.
,
Shammas
,
N. Y. A.
,
Grainger
,
S.
, and
Taylor
,
I.
,
2011
, “
Thermoelectric Cooling of Microelectronic Circuits and Waste Heat Electrical Power Generation in a Desktop Personal Computer
,”
Mater. Sci. Eng. B
,
176
(
4
), pp.
316
325
.10.1016/j.mseb.2010.09.010
20.
Martínez
,
A.
,
Astrain
,
D.
, and
Rodríguez
,
A.
,
2011
, “
Experimental and Analytical Study on Thermoelectric Self-Cooling of Devices
,”
Energy
,
36
(
8
), pp.
5250
5260
.10.1016/j.energy.2011.06.029
21.
Martínez
,
A.
,
Astrain
,
D.
, and
Rodríguez
,
A.
,
2013
, “
Dynamic Model for Simulation of Thermoelectric Self-Cooling Applications
,”
Energy
,
55
, pp.
1114
1126
.10.1016/j.energy.2013.03.093
22.
COMSOL, Inc.
,
2010
, “COMSOL Multiphysics User’s Guide, Version 4.1.”
You do not currently have access to this content.