In industrial environments, boiler units are widely used to supply heat and electrical power. At an integrated steel mill, industrial boilers combust a variable mixture of metallurgical gases combined with additional fuels to generate high-pressure superheated steam. Most tangentially fired boilers have experienced water wall tube failures in the combustion zone, which are thought to be caused by some deficiency in the combustion process. The challenge faced in this present process is that there are very limited means to observe the boiler operation. In this study, a three-dimensional computational fluid dynamics (CFD) modeling and simulation of an industrial tangentially fired boiler firing metallurgical gases was conducted. Eddy dissipation combustion model was applied on this multiple fuel combustion process. Simulation results obtained from the developed CFD model were validated by industrial experiments. A quick comparison of the flame shape from the simulation to the actual flame in the boiler showed a good agreement. The flow field and temperature distribution inside the tangentially fired boiler were analyzed under the operation conditions, and a wall water tube overheating problem was observed and directly related to the flow characteristics.

References

1.
Xuchang
,
X.
,
Zhigang
,
W.
,
Yuqun
,
Z.
, and
Changhao
,
Z.
,
2007
, “
False Diffusion in Numerical Simulation of Combustion Processes in Tangential-Fired Furnace
,”
J. Mech. Sci. Technol.
,
21
(
11
), pp.
1828
1846
.10.1007/BF03177439
2.
Habib
,
M. A.
,
Ben-Mansour
,
R.
, and
Abualhamayel
,
H. I.
,
2010
, “
Thermal and Emission Characteristics in a Tangentially Fired Boiler Model Furnace
,”
Int. J. Energy Res.
,
34
(
13
), pp.
1164
1182
.10.1002/er.1667
3.
Yuegui
,
Z.
,
Tongm
,
X.
,
Shien
,
H.
, and
Mingchuan
,
Z.
,
2009
, “
Experimental and Numerical Study on the Flow Fields in Upper Furnace for Large Scale Tangentially Fired Boilers
,”
Appl. Therm. Eng.
,
29
(
4
), pp.
732
739
.10.1016/j.applthermaleng.2008.03.047
4.
Yuegui
,
Z.
,
Mingchuan
,
Z.
,
Tongmo
,
X.
, and
Shien
,
H.
,
2009
, “
Effect of Opposing Tangential Primary Air Jets on the Flue Gas Velocity Deviation for Large-Scale Tangentially Fired Boilers
,”
Energy Fuels
,
23
(
11
), pp.
5375
5382
.10.1021/ef900558e
5.
Boshu
,
H.
,
Meiqian
,
C.
,
Shumin
,
L.
,
Lijuan
,
F.
,
Jinyuan
,
X.
, and
Wei-Ping
,
P.
,
2005
, “
Measured Vorticity Distributions in a Model of Tangentially Fired Furnace
,”
Exp. Therm. Fluid Sci.
,
29
(
5
), pp.
537
554
.10.1016/j.expthermflusci.2004.05.020
6.
Shyan-Shu
,
S.
,
Yi-Hsin
,
C.
,
Shi-Shang
,
J.
,
Ming-Da
,
M.
, and
Ta-Sung
,
H.
,
2010
, “
Statistical Key Variable Analysis and Model-Based Control for the Improvement of Thermal Efficiency of a Multi-Fuel Boiler
,”
Fuel
,
89
(
5
), pp.
1141
1149
.10.1016/j.fuel.2009.07.001
7.
Srdjan
,
B.
,
Miroslav
,
S.
,
Simeon
,
O.
, and
Dragan
,
T.
,
2006
, “
Three-Dimensional Modeling of Utility Boiler Pulverized Coal Tangentially Fired Furnace
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3371
3378
.10.1016/j.ijheatmasstransfer.2006.03.022
8.
Vuthaluru
,
R.
, and
Vuthaluru
,
H. B.
,
2006
, “
Modelling of a Wall Fired Furnace for Different Operating Conditions Using fluent
,”
Fuel Process. Technol.
,
87
(
7
), pp.
633
639
.10.1016/j.fuproc.2006.01.004
9.
Srdjan
,
B.
,
Miroslav
,
S.
,
Nenad
,
C.
, and
Branislav
,
S.
,
2009
, “
Numerical Prediction of Pulverized Coal Flame in Utility Boiler Furnaces
,”
Energy Fuel
,
23
(
11
), pp.
5401
5412
.10.1021/ef9005737
10.
Chungen
,
Y.
,
Lasse
,
R.
, and
Thomas
,
J.
,
2003
, “
Further Study of the Gas Temperature Deviation in Large-Scale Tangentially Coal-Fired Boilers
,”
Fuel
,
82
(
9
), pp.
1127
1137
.10.1016/S0016-2361(02)00418-0
11.
Chungen
,
Y.
,
Sebastien
,
C.
,
Jean-Luc
,
H.
,
Bernard
,
B.
, and
Everest
,
P.
,
2002
, “
Investigation of the Flow, Combustion, Heat-Transfer and Emissions From a 609 MW Utility Tangentially Fired Pulverized-Coal Boiler
,”
Fuel
,
81
(
8
), pp.
997
1006
.10.1016/S0016-2361(02)00004-2
12.
Hari
,
B. V.
, and
Rupa
,
V.
,
2010
, “
Control of Ash Related Problems in a Large Scale Tangentially Fired Boiler Using CFD Modeling
,”
Appl. Energy
,
87
(
4
), pp.
1418
1426
.10.1016/j.apenergy.2009.08.028
13.
Hou
,
S. S.
,
Chen
,
C. H.
,
Chang
,
C. Y.
,
Wu
,
C. W.
,
Ou
,
J. J.
, and
Lin
,
T. H.
,
2011
, “
Firing Blast Furnace Gas Without Support Fuel in Steel Mill Boilers
,”
Energy Convers. Manage.
,
52
(
7
), pp.
2758
2767
.10.1016/j.enconman.2011.02.009
14.
Ma
,
H. K.
, and
Wu
,
F. S.
,
1992
, “
Effect of BFG on Unburned Carbon Formation in a Coal-Fired Boiler
,”
Int. Commun. Heat Mass Transfer
,
19
(
3
), pp.
409
421
.10.1016/0735-1933(92)90086-W
15.
Milorad
,
B.
, and
Panos
,
M.
,
2000
, “
Energy Saving Does Not Yield CO2 Emissions Reductions: The Case of Waster Fuel Use in a Steel Mill
,”
Appl. Therm. Eng.
,
20
(
11
), pp.
963
975
.10.1016/S1359-4311(99)00073-3
16.
Gicquel
,
O.
,
Vervisch
,
L.
,
Joncquet
,
G.
,
Labegorre
,
B.
, and
Darabiha
,
N.
,
2003
, “
Combustion of Residual Steel Gases: Laminar Flame Analysis and Turbulent Flamelet Modeling
,”
Fuel
,
82
(
8
), pp.
983
991
.10.1016/S0016-2361(02)00384-8
17.
Habib
,
M. A.
,
Ben-Mansour
,
R.
,
Badr
,
H. M.
,
Ahmed
,
S. F.
, and
Ghoniem
,
A. F.
,
2012
, “
Computational Fluid Dynamic Simulation of Oxyfuel Combustion in Gas-Fired Water Tube Boilers
,”
Comput. Fluids
,
56
, pp.
152
165
.10.1016/j.compfluid.2011.12.009
18.
Qingyan
,
F.
,
Amir
,
A. B. M.
,
Yan
,
W.
,
Zixue
,
L.
, and
Huaichun
,
Z.
,
2012
, “
Numerical Simulation of Multifuel Combustion in a 200 MW Tangentially Fired Unity Boiler
,”
Energy Fuels
,
26
(
1
), pp.
313
323
.10.1021/ef201149p
19.
Chun-Lang
,
Y.
,
2012
, “
Numerical Investigation of the Heat Transfer and Fluid Flow in a Carbon Monoxide Boiler
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3601
3617
.10.1016/j.ijheatmasstransfer.2012.02.073
20.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation
,”
Comput. Fluids
,
14
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
21.
FLUENT 13.0, Theory Guide, FLUENT, Inc.
22.
Habib
,
M. A.
,
Ben-Mansour
,
R.
, and
Antar
,
M. A.
,
2005
, “
Flow Field and Thermal Characteristics in a Model of a Tangentially Fired Furnace Under Different Conditions of Burner Tripping
,”
Heat Mass Transfer
,
41
(
10
), pp.
909
920
.10.1007/s00231-004-0593-6
23.
Daniel
,
J. O.
,
Ferreira
,
M. C.
, and
Song
,
W. P.
,
2012
, “
The Impact of Radiation on Gas Combustion Modeling for a Kraft Recovery Boiler
,”
11th International Symposium on Process Systems Engineering
, Singapore, July 15–19.
24.
Qinggang
,
X.
,
Song-Chang
,
K.
, and
Alberto
,
P.
,
2013
, “
Development of a Generalized Numerical Frame Work for Simulating Biomass Fast Pyrolysis in Fluidized-Bed Reactors
,”
Chem. Eng. Sci.
,
99
, pp.
305
313
.10.1016/j.ces.2013.06.017
25.
Qinggang
,
X.
,
Lijuan
,
D.
,
Wei
,
W.
, and
Wei
,
G.
,
2011
, “
SPH Method for Two-Fluid Modeling of Particle-Fluid Fluidization
,”
Chem. Eng. Sci.
,
66
(
9
), pp.
1859
1865
.10.1016/j.ces.2011.01.033
26.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics, the Finite Volume Method
,
Prentice-Hall
,
Essex, UK
.
27.
Joseph
,
K. L. L.
,
Shek
,
C. H.
, and
Wong
,
K. W.
,
2001
, “
A Novel Technique to Detect Hot Spots in High Temperature Boiler
,”
Sens. Actuators A
,
95
(
1
), pp.
51
54
.10.1016/S0924-4247(01)00744-0
You do not currently have access to this content.