In this study, a detailed modeling of the heat and mass transfer processes inside a plate-and-frame absorber with hydrophobic microporous membrane contactor at aqueous solution-water vapor interface as a part of a chiller model is developed. The absorber is a component of a 5 kW cooling capacity single effect lithium bromide-water absorption chiller with a hot water thermally driven generator, a water-cooled absorber, and a condenser. The model is used to investigate the performance of the absorber in case the chiller operates at different values of the inlet driving hot water and cooling water (coolant) temperatures. The results clearly indicate that for the same cooling capacity of the chiller and compared with the performance at the design point value, increasing the inlet driving hot water temperature results in an increase in the required absorber size and consequently a decrease in the absorber performance, while decreasing the cooling water (coolant) inlet temperature leads to slight decreases in the required absorber size and consequently an increase in the absorber performance. The effect is prominent and can be used to decrease the absorber size for chillers work in places where the option of lower inlet coolant temperature is available with normal driving hot water temperature.

1.
Drost
,
K.
,
Liburdy
,
J.
,
Paul
,
B.
, and
Peterson
,
R.
, 2005, “
Enhancement of Heat and Mass Transfer in Mechanically Constrained Ultra Thin Films
,” DOE Final Report No. FC36-01GO11049.
2.
Ali
,
A. H. H.
, 2010, “
Design of a Compact Absorber With a Hydrophobic Membrane Contactor at the Liquid Vapor Interface for Lithium Bromide-Water Absorption Chillers
,”
Appl. Energy
0306-2619,
87
, pp.
1112
1121
.
3.
Ali
,
A. H. H.
, and
Schwerdt
,
P.
, 2009, “
Characteristics of the Membrane Utilized in a Compact Absorber for Lithium Bromide-Water Absorption Chillers
,”
Int. J. Refrig.
0140-7007,
32
(
8
), pp.
1886
1896
.
4.
Srikhirin
,
P.
,
Aphornratana
,
S.
, and
Chungpaibulpatana
,
S.
, 2001, “
A Review of Absorption Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
1364-0321,
5
, pp.
343
372
.
5.
Yu
,
J. S.
,
Changt
,
W. S.
, and
Haskin
,
W. L.
, 1992, “
Use of Membrane Transport in an Absorption Thermal Transfer Cycle
,”
J. Thermophys. Heat Transfer
0887-8722,
6
, pp.
371
376
.
6.
Schaal
,
F.
,
Weimer
,
T.
,
Stroh
,
N.
,
Walitza
,
E.
,
Mattes
,
H.
, and
Hasse
,
H.
, 2005, “
Membrane Contactors for Absorption Refrigeration
,”
Tenth Aachen Membrane Colloquium
, Mar. 16–17, Aachen, Germany.
7.
Baker
,
R. W.
, 2004,
Membrane Technology and Applications
, 2nd ed.,
Wiley
,
New York
.
8.
ASHRAE
, 2005,
2005 ASHRAE Handbook of Fundamentals
,
American Society of Heating Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
9.
Miao
,
D.
, 1978, “
Simulation Model of a Single-Stage Lithium Bromide-Water Absorption Unit
,” NASA Technical Paper No. 1296.
10.
LeBrun
,
J.
,
Bourdouxhe
,
J. P.
, and
Grodent
,
M.
, 1999, “
HVAC 1 Toolkit: A Toolkit for Primary HVAC System
,” Atlanta: American Society of Heating Refrigerating and Air Conditioning Engineers, Atlanta, GA.
11.
Martinez
,
L.
, and
Rodriguez-Maroto
,
J. M.
, 2007, “
On Transport Resistances in Direct Contact Membrane Distillation
,”
J. Membr. Sci.
0376-7388,
295
, pp.
28
39
.
12.
Iversen
,
S. B.
,
Bhatia
,
V. K.
,
Dam-Johansen
,
K.
, and
Jonsson
,
G.
, 1997, “
Characterization of Microporous Membranes for Use in Membrane Contactors
,”
J. Membr. Sci.
0376-7388,
130
, pp.
205
217
.
13.
Martinez
,
L.
, and
Rodriguez-Maroto
,
J. M.
, 2006, “
Characterization of Membrane Distillation Modules and Analysis of Mass Flux Enhancement by Channel Spacers
,”
J. Membr. Sci.
0376-7388,
274
, pp.
123
137
.
14.
Gabelman
,
A.
, and
Hwang
,
S.
, 1999, “
Hollow Fiber Membrane Contactors
,”
J. Membr. Sci.
0376-7388,
159
, pp.
61
106
.
15.
Alves
,
V. D.
, and
Coelhoso
,
I. M.
, 2007, “
Study of Mass and Heat Transfer in the Osmotic Evaporation Process Using Hollow Fiber Membrane Contactors
,”
J. Membr. Sci.
0376-7388,
289
, pp.
249
257
.
16.
Kaita
,
Y.
, 2001, “
Thermodynamic Properties of Lithium Bromide-Water Solutions at High Temperatures
,”
Int. J. Refrig.
0140-7007,
24
, pp.
374
390
.
17.
Medrano
,
M.
,
Bourouis
,
M.
,
Perez-Blanco
,
H.
, and
Coronas
,
A.
, 2003, “
A Simple Model for Falling Film Absorption on Vertical Tubes in the Presence of Non-Absorbables
,”
Int. J. Refrig.
0140-7007,
26
, pp.
108
116
.
18.
Ali
,
A. H. H.
,
Peter
,
N.
, and
Pollerberg
,
C.
, 2008, “
Performance Assessment of an Integrated Free Cooling and Solar Powered Single-Effect Lithium Bromide-Water Absorption Chiller
,”
Sol. Energy
0038-092X,
82
, pp.
1021
1030
.
19.
Ali
,
A. H. H.
, and
Schwerdt
,
P.
, 2010, “
For Designing a Compact Absorber With Membrane Contactor at Liquid-Vapor Interface: Influence of Membrane Properties on Water Vapour Transfer
,”
ASHRAE Trans.
0001-2505,
116
(
1
), pp.
398
407
.
20.
Albrecht
,
W.
,
Hilke
,
R.
,
Kneifel
,
K.
,
Weigel
,
Th.
, and
Peinemann
,
K. -V.
, 2005, “
Selection of Microporous Hydrophobic Membranes for Use in Gas/Liquid Contactors: An Experimental Approach
,”
J. Membr. Sci.
0376-7388,
263
, pp.
66
76
.
21.
Conde
,
M. R.
, 2004, “
Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
367
382
.
You do not currently have access to this content.