Abstract

The solar dryer was an effective choice for drying agriculture products because it is cost-effective and requires no external energy for process drying. The fluctuation in drying temperature due to irregular radiation availability influences the food product quality and drying time significantly during the drying process using a solar dryer. In this study, the solar dryer integrated with a solar collector is experimentally studied using phase change material (PCM—paraffin wax) embedded with a fin collector absorber. The drying products such as banana (DP1), and potato (DP2) slices are used in the thickness of 2 mm. The absorber with PCM and fins configuration in the solar collector leads to better thermal performance compared to conventional solar collector absorbers and PCM absorbers. The dryer with PCM and fins-integrated solar collector absorber achieved higher outlet air temperatures of 56.5 °C and 58.1 °C for DP1 and DP2 61, respectively. Additionally, the collector efficiency, moisture, and drying rate for dryers with PCM-integrated solar collector absorbers of DP1/DP2 products were improved by 73.4/75.4%, 0.92/0.95, and 0.88/0.9 kg/h, respectively. Therefore, the dryer with PCM and fins-integrated solar collector absorber is the best choice for drying agricultural products using solar technologies.

References

1.
Moussaoui
,
H.
,
Bahammou
,
Y.
,
Tagnamas
,
Z.
,
Kouhila
,
M.
,
Lamharrar
,
A.
, and
Idlimam
,
A.
,
2021
, “
Application of Solar Drying on the Apple Peels Using an Indirect Hybrid Solar-Electrical Forced Convection Dryer
,”
Renew. Energy
,
168
, pp.
131
140
.
2.
Mohana
,
Y.
,
Mohanapriya
,
R.
,
Anukiruthika
,
T.
,
Yoha
,
K. S.
,
Moses
,
J. A.
, and
Anandharamakrishnan
,
C.
,
2020
, “
Solar Dryers for Food Applications: Concepts, Designs, and Recent Advances
,”
Sol. Energy
,
208
, pp.
321
344
.
3.
Kumar
,
P.
, and
Singh
,
D.
,
2020
, “
Advanced Technologies and Performance Investigations of Solar Dryers: A Review
,”
Renew. Energy Focus
,
35
, pp.
148
158
.
4.
Prakash
,
O.
,
Laguri
,
V.
,
Pandey
,
A.
,
Kumar
,
A.
, and
Kumar
,
A.
,
2016
, “
Review on Various Modelling Techniques for the Solar Dryers
,”
Renew. Sust. Energy Rev.
,
62
, pp.
396
417
.
5.
Shalaby
,
S. M.
,
Bek
,
M. A.
, and
El-Sebaii
,
A. A.
,
2014
, “
Solar Dryers With PCM as Energy Storage Medium: A Review
,”
Renew. Sust. Energy Rev.
,
33
, pp.
110
116
.
6.
Alimohammadi
,
Z.
,
Samimi Akhijahani
,
H.
, and
Salami
,
P.
,
2020
, “
Thermal Analysis of a Solar Dryer Equipped With PTSC and PCM Using Experimental and Numerical Methods
,”
Sol. Energy
,
201
, pp.
157
177
.
7.
Atalay
,
H.
,
2020
, “
Assessment of Energy and Cost Analysis of Packed Bed and Phase Change Material Thermal Energy Storage Systems for the Solar Energy-Assisted Drying Process
,”
Sol. Energy
,
198
, pp.
124
138
.
8.
Pankaew
,
P.
,
Aumporn
,
O.
,
Janjai
,
S.
,
Pattarapanitchai
,
S.
,
Sangsan
,
M.
, and
Bala
,
B. K.
,
2020
, “
Performance of a Large-Scale Greenhouse Solar Dryer Integrated With Phase Change Material Thermal Storage System for Drying of Chilli
,”
Int. J. Green Energy
,
17
(
11
), pp.
632
643
.
9.
Zachariah
,
R.
,
Maatallah
,
T.
, and
Modi
,
A.
,
2020
, “
Environmental and Economic Analysis of a Photovoltaic Assisted Mixed Mode Solar Dryer With Thermal Energy Storage and Exhaust Air Recirculation
,”
Int. J. Energy Res.
,
45
(
2
), pp.
1879
1891
.
10.
Deeto
,
S.
,
Thepa
,
S.
,
Monyakul
,
V.
, and
Songprakorp
,
R.
,
2018
, “
The Experimental New Hybrid Solar Dryer and Hot Water Storage System of Thin Layer Coffee Bean Dehumidification
,”
Renew. Energy
,
115
, pp.
954
968
.
11.
Hamad
,
A. J.
,
Hussien
,
F. M.
, and
Faraj
,
J. J.
,
2021
, “
Multiple Phase Change Materials for Performance Enhancement of a Solar Dryer With Double Pass Collector
,”
J. Energy Eng.
,
118
(
5
), pp.
1483
1497
.
12.
Mandal
,
S.
,
Sharma
,
P. K.
,
Mani
,
I.
,
Kushwaha
,
H. L.
,
T V
,
A. K.
, and
Sarkar
,
S.
, “
Design and Development of Phase Change Material Based Hybrid Solar Dryer for Herbs and Spices
,”
Indian J. Agric. Sci.
,
90
(
11
), pp.
2217
2224
.
13.
Çakmak
,
G.
, and
Yıldız
,
C.
,
2011
, “
The Drying Kinetics of Seeded Grape in Solar Dryer With PCM-Based Solar Integrated Collector
,”
Food Bioprod. Process.
,
89
(
2
), pp.
103
108
.
14.
Ashish
,
C.
, and
Sanjay
,
S.
,
2015
, “
Performance Enhancement of a Drying Chamber of Solar Air Dryer With Phase Change Material as Thermal Energy Storage
,”
Int. J. Eng. Res.
,
2
, pp.
1873
1877
.
15.
Pakhare
,
V. V.
, and
Salve
,
S. P.
,
2016
, “
Design and Development of Solar Dryer Cabinet With Thermal Energy Storage for Drying Chillies
,”
Int. J. Curr. Eng. Technol.
,
358
, p.
362
.
16.
Bhendwade
,
V. T.
, and
Dube
,
A. S.
,
2018
, “
Performance Evaluation of Indirect Solar Dryer
,”
Int. J. Appl. Eng. Res.
,
13
(
5
), pp.
58
63
.
17.
Sreerag
,
T. S.
, and
Jithish
,
K. S.
,
2016
, “
Experimental Investigations of a Solar Dryer With and Without Multiple Phase Change Materials (PCM’s)
,”
World J. Eng.
,
13
(
3
), pp.
210
217
.
18.
NematpourKeshteli
,
A.
,
Iasiello
,
M.
,
Langella
,
G.
, and
Bianco
,
N.
,
2023
, “
Thermal Enhancement Techniques for a Lobed-Double Pipe PCM Thermal Storage System
,”
Appl. Therm. Eng.
,
233
, p.
121139
.
19.
Cavargna
,
A.
,
Mongibello
,
M.
,
Iasiello
, and
Bianco
,
N.
,
2023
, “
Analysis of a Phase Change Material-Based Condenser of a Low-Scale Refrigeration System
,”
Energies
,
16
(
9
), p.
3798
.
20.
Nandan
,
R.
,
Arumuru
,
V.
,
Rath
,
P.
, and
Das
,
M. K.
,
2022
, “
Experimental Study of PCM Based Hybrid Heat Sink For Electronic Cooling
,”
J. Enhanc. Heat Transf.
,
29
(
3
), pp.
1
15
.
21.
Kahwaji
,
S.
,
Johnson
,
M. B.
,
Kheirabadi
,
A. C.
,
Groulx
,
D.
, and
White
,
M. A.
,
2018
, “
Comprehensive Study of Properties of Paraffin Phase Change Materials for Solar Thermal Energy Storage and Thermal Management Applications
,”
Energy
,
162
, pp.
1169
1182
.
22.
Sebbar
,
E. H.
,
Oubenmoh
,
S.
,
Ait Msaad
,
A.
,
Hamdaoui
,
S.
, and
El Rhafiki
,
T.
,
2023
, “
Optimization of Geometrical Parameters of a Solar Collector Coupled With a Thermal Energy Storage System
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
9
), p.
091007
.
23.
Benkaddour
,
A.
, and
Faraji
,
M.
,
2022
, “
Numerical Investigation of a Phase Change Materials Building Integrating Solar Thermal Collector PCM-BST
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081015
.
24.
Sridharan
,
M.
, and
Shenbagaraj
,
S.
,
2021
, “
Application of Generalized Regression Neural Network in Predicting the Thermal Performance of Solar Flat Plate Collector Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021023
.
25.
Selvam
,
L.
,
Aruna
,
M.
,
Hossain
,
I.
,
Venkatesh
,
R.
,
Karthigairajan
,
M.
,
Prabagaran
,
S.
,
Mohanavel
,
V.
,
Seikh
,
A. H.
, and
Kalam
,
M. A.
,
2024
, “
Impact of Hybrid Nanofluid on Thermal Behavior of Flat-Plate Solar Collector: Performance Study
,”
J. Therm. Anal.
,
149
(
10
), pp.
5047
5057
.
26.
Singh
,
D.
,
Mishra
,
S.
, and
Shankar
,
R.
,
2022
, “
Drying Kinetics and Performance Analysis of Indirect Solar Dryer Integrated With Thermal Energy Storage Material for Drying of Wheat Seeds: An Experimental Approach
,”
Energy Sour., Part A: Recover. Util. Environ. Eff.
,
44
, pp.
7967
7985
.
27.
Env. Prot.
,
2009
, Guidelines for the Measurement of Air Flow and Mercury in Cellroom Ventilation, Euro Chlor Publication, Avenue E. Van Nieuwenhuyse.
28.
Rezaei
,
M.
,
Sefid
,
M.
,
Almutairi
,
K.
,
Mostafaeipour
,
A.
,
Ao
,
H. X.
,
Dehshiri
,
S. J. H.
,
Dehshiri
,
S. S. H.
,
Chowdhury
,
S.
, and
Techato
,
K.
,
2022
, “
Investigating Performance of a New Design of Forced Convection Solar Dryer
,”
Sustain. Energy Technol. Assessm.
,
50
, p.
101863
.
29.
Suherman
,
S.
,
Hadiyanto
,
H.
,
Susanto
,
E. E.
,
Utami
,
I. A. P.
, and
Ningrum
,
T.
,
2020
, “
Hybrid Solar Dryer for Sugar-Palm Vermicelli Drying
,”
J. Food Process Eng.
,
43
(
9
), p.
e134471
.
30.
Elangovan
,
E.
, and
Natarajan
,
S. K.
,
2022
, “
Study of Activation Energy and Moisture Diffusivity of Various Dipping Solutions of Ivy Gourd Using Solar Dryer
,”
Environ. Sci. Pollut. Res.
,
30
(
1
), pp.
996
1010
.
31.
Aktas
,
M.
,
Sozen
,
A.
,
Amini
,
A.
, and
Khanlari
,
A.
,
2017
, “
Experimental Analysis and CFD Simulation of Infrared Apricot Dryer With Heat Recovery
,”
Dry. Technol.
,
35
(
6
), pp.
766
783
.
32.
Bhore
,
C. V.
,
Andhare
,
A. B.
,
Padole
,
P. M.
,
Loyte
,
A.
,
Sofia Vincent
,
J.
,
Devarajan
,
Y.
, and
Vellaiyan
,
S.
,
2023
, “
Experimental Investigation on Minimizing Degradation of Solar Energy Generation for Photovoltaic Module by Modified Damping Systems
,”
Sol. Energy
,
250
, pp.
194
208
.
33.
Karsli
,
S.
,
2007
, “
Performance Analysis of New-Design Solar Air Collectors for Drying Applications
,”
Renew. Energy
,
32
(
10
), pp.
1645
1660
.
34.
Hu
,
Q.
, and
Li
,
P.
,
2023
, “
Modeling and Optimal Design of a Desalination System Integrated Between a Glass-Covered Solar Collection Water Chamber and a Heat Dissipating Chimney
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
5
), p.
051003
.
35.
Bhore
,
C. V.
,
Andhare
,
A. B.
,
Padole
,
P. M.
,
Loyte
,
A.
,
Yuvarajan
,
D.
,
Thandavamoorthy
,
R.
, and
Ravikumar
,
J.
,
2023
, “
Assessment of Metro-Induced Vibrations on Photo-Voltaic Modules for Their Solar Energy Degradation Potential
,”
Sol. Energy
,
255
, pp.
257
273
.
36.
Munir
,
A.
,
Mahmood
,
F.
,
Amjad
,
W.
, and
Ahmad
,
S. A.
,
2021
, “
Thermal Analysis of a Solar Hybrid Dehydrator Designed for Uniform Multi-Product Drying
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061016
.
37.
Padmavathi
,
K. R.
,
Prabagaran
,
S.
,
Rathinavelu
,
V.
, and
Mohankumar
,
S.
,
2024
, “
Cupric Oxide Nanofluid Influenced Parabolic Trough Solar Collector: Thermal Performance Evaluation
,”
Energy Sour., Part A: Recover. Util. Environ. Eff.
,
46
(
1
), pp.
2811
2827
.
38.
El Khadraoui
,
A.
,
Bouadila
,
S.
,
Kooli
,
S.
,
Farhat
,
A.
, and
Guizani
,
A.
,
2017
, “
Thermal Behaviour of Indirect Solar Dryer: Nocturnal Usage of Solar Air Collector With PCM
,”
J. Clean. Prod.
,
148
, pp.
37
48
.
39.
Sathish
,
T.
,
2020
, “
Experimental Investigation on Degradation of Heat Transfer Properties of a Black Chromium-Coated Aluminium Surface Solar Collector Tube
,”
Int. J. Ambient Energy
,
41
(
7
), pp.
754
758
.
40.
Sain
,
P.
,
Songara
,
V.
,
Karir
,
R.
, and
Balan
,
N.
,
2013
, “
Natural Convection Type Solar Dryer With Latent Heat Storage
,”
Renew. Energy Sustain. Energy
,
2013
, pp.
9
14
.
41.
Logesh
,
K.
,
Kumar
,
R.
,
Singh
,
S.
,
Singh
,
P. K.
,
Maruthy Vijay
,
S. N. S.
,
Manzoore Elahi
,
M. S.
,
Alharbi
,
S. A.
, and
Obaid
,
S. A.
,
2024
, “
Thermal and Exergy Analysis of Solar Air Heater Enhanced With Sodium Carbonate Decahydrate and Magnesium Sulfate Heptahydrate PCM: Performance Evaluation
,”
Appl. Therm. Eng.
,
258
(
PartA
), p.
124556
.
42.
Mugi
,
V. R.
,
Gilago
,
M. C.
,
Chandramohan
,
V. P.
, and
Valasingam
,
S. B.
,
2024
, “
Experimental Evaluation of Performance, Drying and Thermal Parameters of Guava Slabs Dried in a Forced Convection Indirect Solar Dryer Without and With Thermal Energy Storage
,”
Renew. Energy
,
223
, p.
120005
.
You do not currently have access to this content.