Abstract

Transformer-oil with low thermal conductivity and large viscosity has poor heat dissipation capability, which leads to the thermal drive failure caused by transient overload. To improve its cooling capability, this paper has proposed first the method which combined the periodically direction-switching electric field and graphene nanofluid to enhance the mixed convective heat transfer properties of transformer-oil, and analyzed the effects of switching periods, nanofluid concentration, electric field strength, heat flux, and Reynolds number on mixed convection heat transfer experimentally. The results show that the heat transfer characteristic of transformer-oil is improved up to 52% by the periodically direction-switching electric field and graphene nanofluid. As the switching period decreases, the thermal performance of the suspension is enhanced more significantly. Moreover, by analyzing the heat transfer mechanism, the periodically direction-switching electric field causes the nanoparticles to move reciprocally, repeatedly impacting and breaking the boundary layer of the heat exchange surface to enhance the perturbation, thus enhancing the heat transfer effect. Meanwhile, the predicted correlation has been proposed on the basis of influence factors, which are in good agreement with the experimental data.

References

1.
Liu
,
R.
,
Li
,
J.
,
Zhang
,
S.
,
Tang
,
H.
, and
Zhao
,
Z.
,
2012
, “
Uncertainty Analysis of Loss Measurement for Large-Scale Power Transformer
,”
Power Syst. Technol.
,
36
(
7
), pp.
155
160
.
2.
Perez
,
J.
,
2012
, “
Fundamental Principles of Transformer Thermal Loading and Protection
,”
11th IET International Conference on Developments in Power Systems Protection (DPSP 2012)
,
Birmingham, UK
,
Apr. 23–26
, pp.
1
6
.
3.
Choi
,
C.
,
Yoo
,
H. S.
, and
Oh
,
J. M.
,
2008
, “
Preparation and Heat Transfer Properties of Nanoparticle-in-Transformer Oil Dispersions as Advanced Energy-Efficient Coolants
,”
Curr. Appl. Phys.
,
8
(
6
), pp.
710
712
.
4.
Colburn
,
A. P.
, and
De
,
E. I. D. P.
,
1933
, “
Mean Temperature Difference and Heat Transfer Coefficient in Liquid Heat Exchangers
,”
Ind. Eng. Chem.
,
25
(
8
), pp.
873
877
.
5.
Oliver
,
D. R.
,
1962
, “
The Effect of Natural Convection on Viscous-Flow Heat Transfer in Horizontal Tubes
,”
Chem. Eng. Sci.
,
17
(
5
), pp.
335
350
.
6.
Brown
,
A. R.
, and
Thomas
,
M. A.
,
1965
, “
Combined Free and Forced Convection Heat Transfer for Laminar Flow in Horizontal Tubes
,”
Arch. J. Mech. Eng. Sci.
,
7
(
4
), pp.
440
448
.
7.
Yang
,
W.-J.
, and
Aydin
,
O.
,
2000
, “
Mixed Convection in Cavities With a Locally Heated Lower Wall and Moving Sidewalls
,”
Numer. Heat Transfer Appl.
,
37
(
7
), pp.
695
710
.
8.
Maughan
,
J. R.
, and
Incropera
,
E. P.
,
1990
, “
Fully Developed Mixed Convection in a Horizontal Channel Heated Uniformly From Above and Below
,”
Numer. Heat Transfer
,
17
(
4
), pp.
417
430
.
9.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” https://www.osti.gov/servlets/purl/196525
10.
Rahmat
,
E.
,
2018
, “
Special Issue on Recent Developments of Nanofluids
,”
Appl. Sci.
,
8
(
2
), p.
192
.
11.
Shirvan
,
K. M.
,
Ellahi
,
R.
,
Mamourian
,
M.
, and
Moghiman
,
M.
,
2016
, “
Effects of Wavy Surface Characteristics on Natural Convection Heat Transfer in a Cosine Corrugated Square Cavity Filled With Nanofluid
,”
Int. J. Heat Mass Transfer
,
107
, pp.
1110
1118
.
12.
Ellahi
,
R.
,
Zeeshan
,
A.
,
Shehzad
,
N.
, and
Alamri
,
S. Z.
,
2018
, “
Structural Impact of Kerosene-Al2O3 Nanoliquid on MHD Poiseuille Flow With Variable Thermal Conductivity: Application of Cooling Process
,”
J. Mol. Liq.
,
264
, pp.
607
615
.
13.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
542
548
.
14.
Li
,
X.
,
Chen
,
Y.
,
Cheng
,
Z.
,
Jia
,
L.
,
Mo
,
S.
, and
Liu
,
Z.
,
2014
, “
Ultrahigh Specific Surface Area of Graphene for Eliminating Subcooling of Water
,”
Appl. Energy
,
130
, pp.
824
829
.
15.
Patil
,
M.
,
Seo
,
J.-H.
,
Kang
,
S.-J.
, and
Lee
,
M.-Y.
,
2016
, “
Review on Synthesis, Thermo-Physical Property, and Heat Transfer Mechanism of Nanofluids
,”
Energies
,
9
(
10
), pp.
840
840
.
16.
Özerinç
,
S.
,
Kakaç
,
S.
, and
Yazıcıoğlu
,
A. G.
,
2010
, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.
17.
Aravind
,
S. S. J.
, and
Ramaprabhu
,
S.
,
2013
, “
Graphene–Multiwalled Carbon Nanotube-Based Nanofluids for Improved Heat Dissipation
,”
RSC Adv.
,
3
(
13
), pp.
4199
4206
.
18.
Swalmeh
,
M. Z.
,
Alkasasbeh
,
H. T.
,
Hussanan
,
A.
, and
Mamat
,
M.
,
2019
, “
Numerical Study of Mixed Convection Heat Transfer in Methanol Based Micropolar Nanofluid About a Horizontal Circular Cylinder
,”
J. Phys.: Conf. Ser.
,
1366
(
1
), p.
012003
(11 pp.).
19.
Chen
,
Y.
,
Wang
,
Z.
,
Liu
,
X.
, and
He
,
D.
,
2023
, “
Mixed Convection Heat Transfer Enhanced by PCD Electrical Field in a Rectangular Channel
,”
Int. J. Therm. Sci.
,
184
, p.
107952
.
20.
Jia
,
L.
,
Chen
,
Y.
,
Lei
,
S.
,
Mo
,
S.
,
Luo
,
X.
, and
Shao
,
X.
,
2016
, “
External Electromagnetic Field-Aided Freezing of CMC-Modified Graphene/Water Nanofluid
,”
Appl. Energy
,
162
, pp.
1670
1677
.
21.
Wang
,
P.
,
Liu
,
J.
,
Liu
,
Z.
, and
Chen
,
Y.
,
2017
, “
Experiment and Simulation of Natural Convection Heat Transfer of Transformer Oil Under Electric Field
,”
Int. J. Heat Mass Transfer
,
115
, pp.
441
452
.
22.
Wang
,
B. B.
,
Yang
,
C.
,
Xu
,
Z. M.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2023
, “
Effectively Inhibiting Particles Aggregation and Sedimentation for TiO2–H2O Suspension by Application of an Electrode
,”
J. Dispersion Sci. Technol.
,
44
(
4
), pp.
679
685
.
23.
Chen
,
Y.
,
Guo
,
J.
,
Liu
,
X.
, and
He
,
D.
,
2022
, “
Experiment and Predicted Model Study of Resuspended Nanofluid Pool Boiling Heat Transfer Under Electric Field
,”
Int. Commun. Heat Mass Transfer
,
131
, p.
105847
.
24.
Mehrali
,
M.
,
Sadeghinezhad
,
E.
,
Akhiani
,
A. R.
,
Tahan Latibari
,
S.
,
Metselaar
,
H. S. C.
,
Kherbeet
,
A. S.
, and
Mehrali
,
M.
,
2017
, “
Heat Transfer and Entropy Generation Analysis of Hybrid Graphene/Fe3O4 Ferro-Nanofluid Flow Under the Influence of a Magnetic Field
,”
Powder Technol.
,
308
, pp.
149
157
.
25.
Chen
,
Y.
,
Luo
,
P.
,
Tao
,
Q.
,
Liu
,
X.
, and
He
,
D.
,
2021
, “
Natural Convective Heat Transfer Investigation of Nanofluids Affected by Electrical Field With Periodically Changed Direction
,”
Int. Commun. Heat Mass Transfer: A Rapid Commun. J.
,
128
, p.
105613
.
26.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.
27.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
28.
Miao
,
J.
,
Dong
,
M.
,
Ren
,
M.
,
Wu
,
X.
,
Shen
,
L.
, and
Wang
,
H.
,
2013
, “
Effect of Nanoparticle Polarization on Relative Permittivity of Transformer Oil-Based Nanofluids
,”
J. Appl. Phys.
,
113
(
20
), p.
204103
.
29.
Moe
,
M.
,
Zupani
,
M.
, and
Golobi
,
I.
,
2020
, “
Investigation of the Scatter in Reported Pool Boiling CHF Measurements Including Analysis of Heat Flux and Measurement Uncertainty Evaluation Methodology
,”
Appl. Therm. Eng.
,
169
, p.
114938
.
30.
Van Dresar
,
N. T.
,
1997
, “
Prediction of Pressurant Mass Requirements for Axisymmetric Liquid Hydrogen Tanks
,”
J. Propul. Power
,
13
(
6
), pp.
796
796
.
31.
Tang
,
J.
,
Hu
,
X.
, and
Yu
,
Y.
,
2020
, “
Electric Field Effect on the Heat Transfer Enhancement in a Vertical Rectangular Microgrooves Heat Sink
,”
Int. J. Therm. Sci.
,
150
, p.
106222
.
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
33.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
(
7100
), pp.
282
286
.
34.
Ma
,
C.
,
Zhang
,
W.
,
Zhu
,
Y.
,
Ji
,
L.
,
Zhang
,
R.
,
Koratkar
,
N.
, and
Liang
,
J.
,
2008
, “
Alignment and Dispersion of Functionalized Carbon Nanotubes in Polymer Composites Induced by an Electric Field
,”
Carbon
,
46
(
4
), pp.
706
710
.
35.
Li
,
J.
,
Zhang
,
Q.
,
Peng
,
N.
, and
Zhu
,
Q.
,
2005
, “
Manipulation of Carbon Nanotubes Using AC Dielectrophoresis
,”
Appl. Phys. Lett.
,
86
(
15
), p.
56
.
36.
Chen
,
Y.
, and
He
,
D.
,
2020
, “
Dynamic Calculation and Thermal Enhancement Mechanism Analysis of Nanofluid Under Electric Field
,”
Int. Commun. Heat Mass Transfer
,
113
, p.
104517
.
37.
Liang
,
X.
,
Ng
,
S.-P.
,
Ding
,
N.
, and
Wu
,
C.-M. L.
,
2018
, “
Thermal Stability of NO on Ga-Doped Graphene and Effect of External Electric Field
,”
Comput. Mater. Sci.
,
151
, pp.
214
221
.
38.
Zhang
,
L.
,
Zhang
,
S.
,
Wang
,
P.
,
Liu
,
C.
,
Huang
,
S.
, and
Tian
,
H.
,
2014
, “
The Effect of Electric Field on Ti-Decorated Graphene for Hydrogen Storage
,”
Comput. Theor. Chem.
,
1035
(
9
), pp.
68
75
.
39.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Effect of Particle Migration on Heat Transfer in Suspensions of Nanoparticles Flowing Through Minichannels
,”
Microfluid. Nanofluid.
,
1
(
2
), pp.
183
189
.
40.
Martin
,
C. A.
,
Sandler
,
J. K. W.
,
Windle
,
A. H.
,
Schwarz
,
M. K.
,
Bauhofer
,
W.
,
Schulte
,
K.
, and
Shaffer
,
M. S. P.
,
2005
, “
Electric Field-Induced Aligned Multi-Wall Carbon Nanotube Networks in Epoxy Composites
,”
Polymer
,
46
(
3
), pp.
877
886
.
41.
Sobti
,
A.
, and
Wanchoo
,
R. K.
,
2013
, “
Thermal Conductivity of Nanofluids
,”
Mater. Sci. Forum
,
757
, pp.
111
137
.
42.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2007
, “
Mixing Effect on the Enhancement of the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4668
4677
.
43.
Kumar
,
Y.
,
Jaiswal
,
P.
,
Panda
,
D.
,
Nigam
,
K. D. P.
, and
Biswas
,
K. G.
,
2022
, “
A Critical Review on Nanoparticle-Assisted Mass Transfer and Kinetic Study of Biphasic Systems in Millimeter-Sized Conduits
,”
Chem. Eng. Process.: Process Intensif.
,
170
, p.
108675
.
44.
Min
,
J. Y.
,
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Motion of Nanoparticles in Nanofluids Under an Electric Field
,”
ASME 2005 International Mechanical Engineering Congress and Exposition, 42223
,
Orlando, FL
,
Nov. 5–11
, pp.
497
501
.
45.
Xuan
,
Y.
,
Li
,
Q.
, and
Hu
,
W.
,
2003
, “
Aggregation Structure and Thermal Conductivity of Nanofluids
,”
AIChE J.
,
49
(
4
), pp.
1038
1043
.
You do not currently have access to this content.