Abstract

Gas turbine power plants play a critical role in meeting the increasing demand for electricity. However, their performance can be affected by high ambient temperatures and humidity levels in tropical climates, which can lead to a decrease in power output. This study explores the potential benefits of using inlet air cooling with desiccant dehumidification and evaporative cooling to improve the performance of gas turbine power plants in tropical regions. The findings indicate that this method of inlet air cooling, which integrates evaporative cooling, desiccant wheel, and Maisotsenko cooler, is a viable option for mitigating the performance drop of gas turbines in hot tropical conditions. Moreover, by utilizing turbine exhaust gases to heat the regeneration air utilized in the desiccant wheel for dehumidification, the compressor inlet temperature can be reduced by an average of 11.5 °C. Additionally, the power requirement of the inlet air cooling system is about 0.9 MW, while there is an improvement of more than 2 MW in power output at peak ambient temperature. Further research is needed to understand and quantify other benefits related to inlet air cooling, such as reducing emissions of harmful pollutants and operating at higher turbine inlet temperatures.

References

1.
Pinilla Fernandez
,
D. A.
,
Foliaco
,
B.
,
Padilla
,
R. V.
,
Bula
,
A.
, and
Gonzalez-Quiroga
,
A.
,
2021
, “
High Ambient Temperature Effects on the Performance of a Gas Turbine-Based Cogeneration System With Supplementary Fire in a Tropical Climate
,”
Case Stud. Therm. Eng.
,
26
, p.
101206
.
2.
Saghafifar
,
M.
, and
Gadalla
,
M.
,
2015
, “
Innovative Inlet Air Cooling Technology for Gas Turbine Power Plants Using Integrated Solid Desiccant and Maisotsenko Cooler
,”
Energy
,
87
(
5
), pp.
663
677
.
3.
Alhazmy
,
M. M.
,
Jassim
,
R. K.
, and
Zaki
,
G. M.
,
2006
, “
Performance Enhancement of Gas Turbines by Inlet air-Cooling in Hot and Humid Climates
,”
Int. J. Energy Res.
,
30
(
10
), pp.
777
797
.
4.
Chaker
,
M.
, and
Meher-Homji
,
C. B.
,
2002
, “
Inlet Fogging of Gas Turbine Engines: Climatic Analysis of Gas Turbine Evaporative Cooling Potential of International Locations
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6, 2002
, pp.
371
386
, ASME Paper No. GT2002-30559.
5.
Baakeem
,
S. S.
,
Orfi
,
J.
,
Alaqel
,
S.
, and
Al-Ansary
,
H.
,
2017
, “
Impact of Ambient Conditions of Arab Gulf Countries on the Performance of Gas Turbines Using Energy and Exergy Analysis
,”
Entropy
,
19
(
1
), p.
32
.
6.
Ameri
,
M.
, and
Hejazi
,
S. H.
,
2004
, “
The Study of Capacity Enhancement of the Chabahar Gas Turbine Installation Using an Absorption Chiller
,”
Appl. Therm. Eng.
,
24
(
1
), pp.
59
68
.
7.
Huda
,
Z.
,
Zaharinie
,
T.
, and
Al-Ansary
,
H. A.
,
2014
, “
Enhancing Power Output and Profitability Through Energy-Efficiency Techniques and Advanced Materials in Today’s Industrial Gas Turbines
,”
Int. J. Mech. Mater. Eng.
,
9
(
1
), p.
2
.
8.
Nematollahi
,
M.
,
Porkhial
,
S.
, and
Hassanabad
,
M. G.
,
2022
, “
Using Two Novel Integrated Systems to Cool the Air Toward the ISO Condition at the Gas Turbine Inlet
,”
Energy
,
243
(
2
), p.
122724
.
9.
Andrepont
,
J. S.
,
2001
, “
Combustion Turbine Inlet air Cooling (CTIAC): Benefits, Technology Options, and Applications for District Energy
,”
Energy Eng.
,
98
(
3
), p.
52
69
.
10.
Baakeem
,
S. S.
,
Orfi
,
J.
, and
Al-Ansary
,
H.
,
2018
, “
Performance Improvement of Gas Turbine Power Plants by Utilizing Turbine Inlet air-Cooling (TIAC) Technologies in Riyadh, Saudi Arabia
,”
Appl. Therm. Eng.
,
25
(
3
), pp.
417
432
.
11.
Perez-Blanco
,
H.
,
Kim
,
K. H.
, and
Ream
,
S.
,
2007
, “
Evaporatively-Cooled Compression Using a High-Pressure Refrigerant
,”
Appl. Energy
,
84
(
10
), pp.
1028
1043
.
12.
Abdel Rahman
,
A.
, and
Mokheimer
,
E. M. A.
,
2018
, “
Comparative Analysis of Different Inlet Air Cooling Technologies Including Solar Energy to Boost Gas Turbine Combined Cycles in Hot Regions
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112006
.
13.
Majdi Yazdi
,
M. R.
,
Ommi
,
F.
,
Ehyaei
,
M. A.
, and
Rosen
,
M. A.
,
2020
, “
Comparison of gas Turbine Inlet air Cooling Systems for Several Climates in Iran Using Energy, Exergy, Economic, and Environmental (4E) Analyses
,”
Energy Convers. Manage.
,
216
(
11
), p.
112944
.
14.
Al-Ibrahim
,
A. M.
, and
Varnham
,
A.
,
2010
, “
A Review of Inlet air-Cooling Technologies for Enhancing the Performance of Combustion Turbines in Saudi Arabia
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
1879
1888
.
15.
Daou
,
K.
,
Wang
,
R. Z.
, and
Xia
,
Z. Z.
,
2006
, “
Desiccant Cooling air Conditioning: A Review
,”
Renew. Sust. Energy Rev.
,
10
(
2
), pp.
55
77
.
16.
Poursaeidi
,
E.
, and
Arablu
,
M.
,
2013
, “
Humidity Effects on Corrosion-Assisted Fatigue Fracture of Heavy-Duty gas Turbine Compressor Blades
,”
J. Propul. Power
,
29
(
5
), pp.
1009
1016
.
17.
Mahmood
,
M. H.
,
Sultan
,
M.
,
Miyazaki
,
T.
,
Koyama
,
S.
, and
Maisotsenko
,
V. S.
,
2016
, “
Overview of the Maisotsenko Cycle—A Way Towards Dew Point Evaporative Cooling
,”
Renew. Sust. Energy Rev.
,
66
(
5
), pp.
537
555
.
18.
Sadighi Dizaji
,
H.
,
Hu
,
E. J.
, and
Chen
,
L.
,
2018
, “
A Comprehensive Review of the Maisotsenko-Cycle Based Air Conditioning Systems
,”
Energy
,
156
, pp.
725
749
.
19.
Sadighi Dizaji
,
H.
,
Hu
,
E. J.
,
Chen
,
L.
, and
Pourhedayat
,
S.
,
2019
, “
Using Novel Integrated Maisotsenko Cooler and Absorption Chiller for Cooling of Gas Turbine Inlet Air
,”
Energy Convers. Manage.
,
195
, pp.
1067
1078
.
20.
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Gritti
,
C.
, and
Guaiatelli
,
I.
,
2015
, “
Techno-Economic Analysis of Gas Turbine Inlet air Cooling for Combined Cycle Power Plant for Different Climatic Conditions
,”
Appl. Therm. Eng.
,
82
, pp.
57
67
.
21.
Hashmi
,
M. B.
,
Majid
,
M. A. A.
, and
Lemma
,
T. A.
,
2020
, “
Combined Effect of Inlet air Cooling and Fouling on Performance of Variable Geometry Industrial gas Turbines
,”
Alexandria Eng. J.
,
59
,
3
, pp.
1811
1821
.
22.
Mohapatra
,
A. K.
,
Panigrahi
,
N.
, and
Das
,
A. K.
,
2020
,
Augmentation of Energy, Exergy and Emission Performance of gas Turbine Engines Used for Ship Propulsion.
SAE Technical Papers.
23.
Salehi
,
M.
,
Eivazi
,
H.
,
Tahani
,
M.
, and
Masdari
,
M.
,
2020
, “
Analysis and Prediction of Gas Turbine Performance With Evaporative Cooling Processes by Developing a Stage Stacking Algorithm
,”
J. Clean. Prod.
,
277
(
3
), p.
122666
.
24.
Nordin
,
A.
,
Salim
,
D. A.
,
Othoman
,
M. A.
,
Omar Kamal
,
S. N.
,
Tam
,
D.
, and
Yusof
,
M. K. Y.
,
2017
, “
Turbine Inlet Air Cooling for Industrial and Aero-Derivative Gas Turbine in Malaysia Climate
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
104
, p.
012003
.
25.
Omar Kamal
,
S. N.
,
Salim
,
D. A.
,
Mohd Fouzi
,
M. S.
,
Hong Khai
,
D. T.
, and
Yusri Yusof
,
M. K.
,
2017
, “
Feasibility Study of Turbine Inlet Air Cooling Using Mechanical Chillers in Malaysia Climate
,”
Energy Proc.
,
138
, pp.
558
563
.
26.
Comodi
,
G.
,
Renzi
,
M.
,
Caresana
,
F.
, and
Pelagalli
,
L.
,
2015
, “
Enhancing Micro Gas Turbine Performance in Hot Climates Through Inlet Air Cooling Vapour Compression Technique
,”
Appl. Energy
,
147
(
1
), pp.
40
48
.
27.
Sanjay Mohapatra
,
A. K.
,
2014
, “
Thermodynamic Assessment of Impact of Inlet Air Cooling Techniques on Gas Turbine and Combined Cycle Performance
,”
Energy
,
68
, pp.
191
203
.
28.
Nayak
,
L. J.
, and
Mahto
,
D.
,
2014
, “
Performance Improvement of Combined Cycle (Dual Pressure HRSG) Using Mechanical Refrigeration System
,”
Int. J. Appl. Eng. Res.
,
23
, pp.
22539
22550
.
29.
Popli
,
S.
,
Rodgers
,
P.
, and
Eveloy
,
V.
,
2013
, “
Gas Turbine Efficiency Enhancement Using Waste Heat Powered Absorption Chillers in the Oil and Gas Industry
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
918
931
.
30.
Ehyaei
,
M. A.
,
Hakimzadeh
,
S.
,
Enadi
,
N.
, and
Ahmadi
,
P.
,
2012
, “
Exergy, Economic and Environment (3E) Analysis of Absorption Chiller Inlet Air Cooler Used in Gas Turbine Power Plants
,”
Int. J. Energy Res.
,
36
(
4
), pp.
486
498
.
31.
Zaki
,
G. M.
,
Jassim
,
R. K.
, and
Alhazmy
,
M. M.
,
2007
, “
Brayton Refrigeration Cycle for Gas Turbine Inlet air Cooling
,”
Int. J. Energy Res.
,
31
(
13
), pp.
1292
1306
.
32.
Erdem
,
H. H.
, and
Sevilgen
,
S. H.
,
2006
, “
Case Study: Effect of Ambient Temperature on the Electricity Production and Fuel Consumption of a Simple Cycle Gas Turbine in Turkey
,”
Appl. Therm. Eng.
,
26
(
2–3
), pp.
320
326
.
33.
Nemitallah
,
M. A.
,
Habib
,
M. A.
,
Badr
,
H. M.
, et al
,
2019
, “Novel Approaches for Clean Combustion in Gas Turbines,”
Oxyfuel Combustion for Clean Energy Applications
,
M. A.
Nemitallah
, ed.,
Springer International Publishing
,
Cham
, pp.
133
192
.
34.
Promigas SA ESP
,
2023
, “
Composición del Gas Vigente
,” last modified September 1, 2023. https://www.promigas.com/BEO/Paginas/ComposicionGasVigente.aspx, Accessed September 24, 2023.
35.
ASHRAE
,
2013
,
2013 ASHRAE Handbook: Fundamentals
,
ASHRAE
.
36.
Panaras
,
G.
,
Mathioulakis
,
E.
, and
Belessiotis
,
V.
,
2011
, “
Solid Desiccant Air-Conditioning Systems—Design Parameters
,”
Energy
,
36
(
5
), pp.
2399
2406
.
37.
Lawrence
,
M. G.
,
2005
, “
The Relationship Between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications
,”
Bull. Am. Meteorol. Soc.
,
86
(
2
), pp.
225
234
.
38.
Nasa
,
2019
, “
The POWER Project
.” https://power.larc.nasa.gov/, Accessed March 28, 2023.
39.
XM
,
2023
, “
Tipos de generación—XM
.” https://www.xm.com.co/generacion/tipos, Accessed March 28, 2023.
40.
De Antonellis
,
S.
,
Intini
,
M.
, and
Joppolo
,
C. M.
,
2015
, “
Desiccant Wheels Effectiveness Parameters: Correlations Based on Experimental Data
,”
Energy Build.
,
103
(
2
), pp.
296
306
.
You do not currently have access to this content.